【題目】如圖,O為坐標(biāo)原點(diǎn),點(diǎn)F為拋物線C1:
的焦點(diǎn),且拋物線C1上點(diǎn)P處的切線與圓C2:
相切于點(diǎn)Q.
![]()
(Ⅰ)當(dāng)直線PQ的方程為
時(shí),求 拋物線C1的方程;
(Ⅱ)當(dāng)正數(shù)P變化時(shí),記S1 ,S2分別為△FPQ,△FOQ的面積,求
的最小值.
【答案】(1)x2=4
y.(2)
.
【解析】
試題解析:(Ⅰ)設(shè)點(diǎn)P(x0,
),由x2=2py(p>0)得,y=
,求導(dǎo)y′=
,
因?yàn)橹本PQ的斜率為1,所以
=1且x0 -
-√2=0,解得p=2
,
所以拋物線C1 的方程為x2=4
y.
(Ⅱ)因?yàn)辄c(diǎn)P處的切線方程為:y-
=
(x-x0),即2x0x-2py-x02=0,
∴ OQ的方程為y=-
x
根據(jù)切線與圓切,得d=r,即
,化簡(jiǎn)得x04=4x02+4p2,
由方程組
,解得Q(
,
),
所以|PQ|=√1+k2|xP-xQ|=![]()
點(diǎn)F(0,
)到切線PQ的距離是d=
,
所以S1=![]()
=
,
S2=
,
而由x04=4x02+4p2知,4p2=x04-4x02>0,得|x0|>2,
所以![]()
=![]()
=
+3≥2
+3,當(dāng)且僅當(dāng)
時(shí)取“=”號(hào),
即x02=4+2
,此時(shí),p=
.
所以
的最小值為2
+3.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 在一個(gè)特定時(shí)段內(nèi),以點(diǎn)E為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)E正北55海里處有一個(gè)雷達(dá)觀測(cè)站A.某時(shí)刻測(cè)得一艘勻速直線行駛的船只位于點(diǎn)A北偏東
且與點(diǎn)A相距40
海里的位置B,經(jīng)過(guò)40分鐘又測(cè)得該船已行駛到點(diǎn)A北偏東
+
(其中sin
=
,
)且與點(diǎn)A相距10
海里的位置C.
(I)求該船的行駛速度(單位:海里/小時(shí));
(II)若該船不改變航行方向繼續(xù)行駛.判斷它是否會(huì)進(jìn)入警戒水域,并說(shuō)明理由.
![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
為數(shù)列
的前項(xiàng)和,
且
是
與
的等比中項(xiàng).
(1)求數(shù)列
的通項(xiàng)公式;
(2)若
為整數(shù),
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列結(jié)論:
動(dòng)點(diǎn)
分別到兩定點(diǎn)(-3,0)、(3,0) 連線的斜率之乘積為
,設(shè)
的軌跡為曲線
,分別為曲線
的左、右焦點(diǎn),則下列說(shuō)法中:
(1)曲線
的焦點(diǎn)坐標(biāo)為
;
(2)當(dāng)
時(shí),
的內(nèi)切圓圓心在直線
上;
(3)若
,則
;
(4)設(shè)
,則
的最小值為
;
其中正確的序號(hào)是:_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線
:
,過(guò)焦點(diǎn)
斜率大于零的直線
交拋物線于
、
兩點(diǎn),且與其準(zhǔn)線交于點(diǎn)
.
(1)若線段
的長(zhǎng)為
,求直線
的方程;
(2)在
上是否存在點(diǎn)
,使得對(duì)任意直線
,直線
,
,
的斜率始終成等差數(shù)列,若存在求點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
公司從某大學(xué)招收畢業(yè)生,經(jīng)過(guò)綜合測(cè)試,錄用了14名男生和6名女生,這20名畢業(yè)生的測(cè)試成績(jī)?nèi)缜o葉圖所示(單位:分),公司規(guī)定:成績(jī)?cè)?80分以上者到“甲部門”工作;180分以下者到“乙部門”工作.
(1)求男生成績(jī)的中位數(shù)及女生成績(jī)的平均值;
(2)如果用分層抽樣的方法從“甲部門”人選和“乙部門”人選中共選取5人,再?gòu)倪@5人中選2人,那么至少有一人是“甲部門”人選的概率是多少?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)據(jù)
,
,
,…,
是棗強(qiáng)縣普通職工
(
,
)個(gè)人的年收入,設(shè)
個(gè)數(shù)據(jù)的中位數(shù)為
,平均數(shù)為
,方差為
,如果再加上世界首富的年收入
,則這
個(gè)數(shù)據(jù)中,下列說(shuō)法正確的是( )
A.年收入平均數(shù)大大增加,中位數(shù)一定變大,方差可能不變
B.年收入平均數(shù)大大增加,中位數(shù)可能不變,方差變大
C.年收入平均數(shù)大大增加,中位數(shù)可能不變,方差也不變
D.年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
),其導(dǎo)函數(shù)為
.
(1)求函數(shù)
的極值;
(2)當(dāng)
時(shí),關(guān)于
的不等式
恒成立,求
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com