【題目】如圖,矩形ABCD中,
,
,F分別在線段BC和AD上,
,將矩形ABEF沿EF折起
記折起后的矩形為MNEF,且平面
平面ECDF.
![]()
Ⅰ
求證:
平面MFD;
Ⅱ
若
,求證:
;
Ⅲ
求四面體NFEC體積的最大值.
【答案】(1)見解析(2)見解析(3)![]()
【解析】
試題分析:(1)證明:因為四邊形MNEF,EFDC都是矩形,所以MN∥EF∥CD,MN=EF=CD.
所以四邊形MNCD是平行四邊形,所以NC∥MD,因為NC平面MFD,所以NC∥平面MFD. 4分
(2)證明:連接ED,設ED∩FC=O.因為平面MNEF⊥平面ECDF,且NE⊥EF,所以NE⊥平面ECDF, 5分
所以FC⊥NE.又EC=CD,所以四邊形ECDF為正方形,所以 FC⊥ED.所以FC⊥平面NED,
所以ND⊥FC. 8分
(3)解:設NE=
,則EC=4-
,其中0<x<4.由(1)得NE⊥平面FEC,所以四面體NFEC的體積為
,所以
.
當且僅當
,即x=2時,四面體NFEC的體積有最大值2.
科目:高中數學 來源: 題型:
【題目】某某大學藝術專業400名學生參加某次測評,根據男女學生人數比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數,將數據分成7組:
,并整理得到如下頻率分布直方圖:
![]()
(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數小于70的概率;
(Ⅱ)已知樣本中分數小于40的學生有5人,試估計總體中分數在區間[40,50)內的人數;
(Ⅲ)已知樣本中有一半男生的分數不小于70,且樣本中分數不小于70的男女生人數相等.試估計總體中男生和女生人數的比例.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
,且
,設命題
:函數
在
上單調遞減;命題
:函數
在
上為增函數,
(1)若“
且
”為真,求實數
的取值范圍
(2)若“
且
”為假,“
或
”為真,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中所有正確命題的序號為______.
若方程
表示圓,那么實數
;
已知函數
的圖象與函數
的圖象關于直線
對稱,令
,則
的圖象關于原點對稱;
在正方體
中,E、F分別是AB和
的中點,則直線CE、
F、DA三線共點;
冪函數的圖象不可能經過第四象限.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國家射擊隊的某隊員射擊一次,命中7~10環的概率如表所示:
命中環數 | 10環 | 9環 | 8環 | 7環 |
概率 | 0.32 | 0.28 | 0.18 | 0.12 |
求該射擊隊員射擊一次 求:
(1)射中9環或10環的概率;
(2)至少命中8環的概率;(3)命中不足8環的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知與曲線
相切的直線
,與
軸,
軸交于
兩點,
為原點,
,
,(
).
(1)求證::
與
相切的條件是:
.
(2)求線段
中點的軌跡方程;
(3)求三角形
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設點
,動圓
經過點
且和直線
相切,記動圓的圓心
的軌跡為曲線
.
(1)求曲線
的方程;
(2)設曲線
上一點
的橫坐標為
,過
的直線交
于一點
,交
軸于點
,過點
作
的垂線交
于另一點
,若
是
的切線,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
.
(1)求函數y=f(x)的解析式,并用“五點法作圖”在給出的直角坐標系中畫出函數y=f(x)在區間[0,π]上的圖象; ![]()
(2)設α∈(0,π),f(
)=
,求sinα的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com