【題目】已知與曲線
相切的直線
,與
軸,
軸交于
兩點(diǎn),
為原點(diǎn),
,
,(
).
(1)求證::
與
相切的條件是:
.
(2)求線段
中點(diǎn)的軌跡方程;
(3)求三角形
面積的最小值.
【答案】(1)見解析;(2)
;(3)
.
【解析】試題分析:(1)寫出直線的截距式方程,化為一般式,化圓的一般式方程為標(biāo)準(zhǔn)式,求出圓心坐標(biāo)和半徑,由圓心到直線的距離等于半徑得到曲線C與直線l相切的充要條件;
(2)設(shè)出線段AB的中點(diǎn)坐標(biāo),由中點(diǎn)坐標(biāo)公式得到a,b與AB中點(diǎn)坐標(biāo)的關(guān)系,代入(1)中的條件得線段AB中點(diǎn)的軌跡方程.(3)因?yàn)?/span>a與b都大于2,且三角形AOB為直線三角形,要求面積的最小值即要求ab的最小值,根據(jù)(1)中直線l與圓相切的條件(a-2)(b-2)=2解出ab,然后利用基本不等式即可求出ab最小時當(dāng)且經(jīng)當(dāng)a與b相等,求出此時的a與b即可求出面積的最小值.
試題解析:
(1)圓的圓心為
,半徑為1.可以看作是
的內(nèi)切圓。
內(nèi)切圓的半徑
,
即
,
即
,
.
(2)線段AB中點(diǎn)
為![]()
∴
(
)
(3)
,
,
解得
,
,
,
最小面積
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在
上的函數(shù)
,如果滿足:對任意
,存在常數(shù)
,都有
成立,則稱
是
上的有界函數(shù),其中
稱為函數(shù)
的上界,已知函數(shù)
.
(Ⅰ)若
是奇函數(shù),求
的值.
(Ⅱ)當(dāng)
時,求函數(shù)
在
上的值域,判斷函數(shù)
在
上是否為有界函數(shù),并說明理由.
(Ⅲ)若函數(shù)
在
上是以
為上界的函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】父親節(jié)小明給爸爸從網(wǎng)上購買了一雙運(yùn)動鞋,就在父親節(jié)的當(dāng)天,快遞公司給小明打電話話說鞋子已經(jīng)到達(dá)快遞公司了,馬上可以送到小明家,到達(dá)時間為晚上6點(diǎn)到7點(diǎn)之間,小明的爸爸晚上5點(diǎn)下班之后需要坐公共汽車回家,到家的時間在晚上5點(diǎn)半到6點(diǎn)半之間。求小明的爸爸到家之后就能收到鞋子的概率(快遞員把鞋子送到小明家的時候,會把鞋子放在小明家門口的“豐巢”中)為 __________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,
,
,F分別在線段BC和AD上,
,將矩形ABEF沿EF折起
記折起后的矩形為MNEF,且平面
平面ECDF.
![]()
Ⅰ
求證:
平面MFD;
Ⅱ
若
,求證:
;
Ⅲ
求四面體NFEC體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC所在的平面內(nèi),點(diǎn)P0、P滿足
=
,
,且對于任意實(shí)數(shù)λ,恒有
,則( )
A.∠ABC=90°
B.∠BAC=90°
C.AC=BC
D.AB=AC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l1過點(diǎn)A(0,1),l2過點(diǎn)B(5,0),如果l1∥l2,且l1與l2的距離為5,求直線l1與l2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是邊長為
的正方形,側(cè)面
,且
,若
、
分別為
、
的中點(diǎn).
(1)求證:
∥平面
;
(2)求證:平面
平面
.
(3)求四棱錐
的體積
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線
與雙曲線
的漸近線交于
兩點(diǎn),設(shè)
為雙曲線上任一點(diǎn),若
為坐標(biāo)原點(diǎn)),則下列不等式恒成立的是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com