【題目】已知函數(shù)f(x)=log4(ax2+2x+3).
(1)若f(1)=1,求f(x)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù)a,使f(x)的最小值為0?若存在,求出a的值;若不存在,請說明理由.
【答案】(1) f(x)的單調(diào)遞增區(qū)間是(-1,1),遞減區(qū)間是(1,3).
(2) 存在實(shí)數(shù)
使f(x)的最小值為0.
【解析】分析:(1)根據(jù)f(1)=1代入函數(shù)表達(dá)式,解出a=﹣1,再代入原函數(shù)得f(x)=log4(﹣x2+2x+3),求出函數(shù)的定義域后,討論真數(shù)對應(yīng)的二次函數(shù)在函數(shù)定義域內(nèi)的單調(diào)性,即可得函數(shù)f(x)的單調(diào)區(qū)間;
(2)先假設(shè)存在實(shí)數(shù)a,使f(x)的最小值為0,根據(jù)函數(shù)表達(dá)式可得真數(shù)t=ax2+2x+3≥1恒成立,且真數(shù)t的最小值恰好是1,再結(jié)合二次函數(shù)t=ax2+2x+3的性質(zhì),可列出式子:
,由此解出a=
,從而得到存在a的值,使f(x)的最小值為0.
詳解:(1)∵f(x)=log4(ax2+2x+3)且f(1)=1,
∴l(xiāng)og4(a12+2×1+3)=1a+5=4a=﹣1
可得函數(shù)f(x)=log4(﹣x2+2x+3)
∵真數(shù)為﹣x2+2x+3>0﹣1<x<3
∴函數(shù)定義域?yàn)椋ī?,3)
令t=﹣x2+2x+3=﹣(x﹣1)2+4
可得:當(dāng)x∈(﹣1,1)時(shí),t為關(guān)于x的增函數(shù);
當(dāng)x∈(1,3)時(shí),t為關(guān)于x的減函數(shù).
∵底數(shù)為4>1
∴函數(shù)f(x)=log4(﹣x2+2x+3)的單調(diào)增區(qū)間為(﹣1,1),單調(diào)減區(qū)間為(1,3)
(2)設(shè)存在實(shí)數(shù)a,使f(x)的最小值為0,
由于底數(shù)為4>1,可得真數(shù)t=ax2+2x+3≥1恒成立,
且真數(shù)t的最小值恰好是1,
即a為正數(shù),且當(dāng)x=﹣
=﹣
時(shí),t值為1.
∴![]()
a=![]()
因此存在實(shí)數(shù)a=
,使f(x)的最小值為0.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
,
,點(diǎn)
為曲線
上任意一點(diǎn)且滿足![]()
(1)求曲線
的方程;
(2)設(shè)曲線
與
軸交于
兩點(diǎn),點(diǎn)
是曲線
上異于
的任意一點(diǎn),直線
分別交直線
:
于點(diǎn)
,試問
軸上是否存在一個(gè)定點(diǎn)
,使得
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究黏蟲孵化的平均溫度
(單位:
)與孵化天數(shù)
之間的關(guān)系,某課外興趣小組通過試驗(yàn)得到以下6組數(shù)據(jù):
![]()
他們分別用兩種模型①
,②
分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖:
![]()
經(jīng)過計(jì)算
,
,
,
.
(1)根據(jù)殘差圖,比較模型①、②的擬合效果,應(yīng)選擇哪個(gè)模型?(給出判斷即可,不必說明理由)
(2)殘差絕對值大于1的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除,剔除后應(yīng)用最小二乘法建立
關(guān)于
的線性回歸方程.(精確到
).
參考公式:線性回歸方程
中,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定一個(gè)數(shù)列{an},在這個(gè)數(shù)列里,任取m(m≥3,m∈N*)項(xiàng),并且不改變它們在數(shù)列{an}中的先后次序,得到的數(shù)列{an}的一個(gè)m階子數(shù)列.
已知數(shù)列{an}的通項(xiàng)公式為an=
(n∈N* , a為常數(shù)),等差數(shù)列a2 , a3 , a6是數(shù)列{an}的一個(gè)3子階數(shù)列.
(1)求a的值;
(2)等差數(shù)列b1 , b2 , …,bm是{an}的一個(gè)m(m≥3,m∈N*)階子數(shù)列,且b1=
(k為常數(shù),k∈N* , k≥2),求證:m≤k+1
(3)等比數(shù)列c1 , c2 , …,cm是{an}的一個(gè)m(m≥3,m∈N*)階子數(shù)列,求證:c1+c1+…+cm≤2﹣
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個(gè)底邊長為8、高為4的等腰三角形,側(cè)視圖是一個(gè)底邊長為6、高為4的等腰三角形.
![]()
(1)求該幾何體的體積
;
(2)求該幾何體的表面積
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=
﹣
(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=anlog3an , 求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中學(xué)生綜合素質(zhì)評價(jià)某個(gè)維度的測評中,分優(yōu)秀、合格、尚待改進(jìn)三個(gè)等級進(jìn)行學(xué)生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結(jié)果的影響,采用分層抽樣方法從高一年級抽取了45名學(xué)生的測評結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:
表一:男生
![]()
表二:女生
![]()
(1)從表二的非優(yōu)秀學(xué)生中隨機(jī)抽取2人交談,求所選2人中恰有1人測評等級為合格的概率;
(2)由表中統(tǒng)計(jì)數(shù)據(jù)填寫下面的
列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測評結(jié)果優(yōu)秀與性別有關(guān)”.
![]()
參考公式:
,其中
.
參考數(shù)據(jù):
| 0.10 | 0.05 | 0.01 |
| 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
為參數(shù)),
為參數(shù)).
(1)化
的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;
(2)若
上的點(diǎn)
對應(yīng)的參數(shù)為
為
上的動點(diǎn),求
的中點(diǎn)
到直線
為參數(shù))距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求經(jīng)過直線L1:3x + 4y – 5 = 0與直線L2:2x – 3y + 8 = 0的交點(diǎn)M,且滿足下列條件的直線方程
(1)與直線2x + y + 5 = 0平行 ;
(2)與直線2x + y + 5 = 0垂直;
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com