【題目】某家具城進行促銷活動,促銷方案是:顧客每消費滿1000元,便可以獲得獎券一張,每張獎券中獎的概率為
,若中獎,則家具城返還顧客現金1000元,某顧客購買一張價格為3400元的餐桌,得到3張獎券,設該顧客購買餐桌的實際支出為
(元);
(1)求
的所有可能取值;
(2)求
的分布列和數學期望
;
科目:高中數學 來源: 題型:
【題目】隨著網絡時代的進步,流量成為手機的附帶品,人們可以利用手機隨時隨地的瀏覽網頁,聊天,看視頻,因此,社會上產生了很多低頭族.某研究人員對該地區18∽50歲的5000名居民在月流量的使用情況上做出調查,所得結果統計如下圖所示:
![]()
(Ⅰ)以頻率估計概率,若在該地區任取3位居民,其中恰有
位居民的月流量的使用情況
在300M∽400M之間,求
的期望
;
(Ⅱ)求被抽查的居民使用流量的平均值;
(Ⅲ)經過數據分析,在一定的范圍內,流量套餐的打折情況
與其日銷售份數
成線性相關
關系,該研究人員將流量套餐的打折情況
與其日銷售份數
的結果統計如下表所示:
折扣 | 1折 | 2折 | 3折 | 4折 | 5折 |
銷售份數 | 50 | 85 | 115 | 140 | 160 |
試建立
關于
的的回歸方程.
附注:回歸方程
中斜率和截距的最小二乘估計公式分別為:
, ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n項和為Sn,a3=7,S9=27.
(1)求數列{an}的通項公式;
(2)若bn=|an|,求數列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中正確的是( )
A.若ξ服從正態分布N(0,2),且P(ξ>2)=0.4,則P(0<ξ<2)=0.2
B.x=1是x2﹣x=0的必要不充分條件
C.直線ax+y+2=0與ax﹣y+4=0垂直的充要條件為a=±1
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的離心率為
,其中左焦點
(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,求m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}是遞增的等差數列,且滿足a2a4=21,a1+a5=10.
(1)求{an}的通項公式;
(2)若數列{cn}前n項和Cn=an+1,數列{bn}滿足bn=2ncn(n∈N*),求{bn}的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】假設關于某種設備的使用年限
(年)與所支出的維修費用
(萬元)有如下統計資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
已知
,
.
, ![]()
(1)求
,
;
(2)若
與
具有線性相關關系,求出線性回歸方程;
(3)估計使用年限為10年時,維修費用約是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com