【題目】某農科所對冬季晝夜溫差大小與某反季節大豆新品種發芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發芽數,得到如下資料:
日期 | 12月2日 | 12月3日 | 12月4日 |
溫差 | 11 | 13 | 12 |
發芽數 | 25 | 30 | 26 |
(1)請根據12月2日至12月4日的數據,求出
關于
的線性回歸方程
;
(2)該農科所確定的研究方案是:先用上面的3組數據求線性回歸方程,再選取2組數據進行檢驗.若12月5日溫差為
,發芽數16顆,12月6日溫差為
,發芽數23顆.由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
注:
,
.
科目:高中數學 來源: 題型:
【題目】如圖是由容量為100的樣本得到的頻率分布直方圖.其中前4組的頻率成等比數列,后6組的頻數成等差數列,設最大頻率為a,在
到
之間的數據個數為b,則a,b的值分別為( )
![]()
A.
,78
B.
,83
C.
,78
D.
,83
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中,假命題的是( )
A.一條直線與兩個平行平面中的一個相交,則必與另一個平面相交.
B.平行于同一平面的兩條直線一定平行.
C.如果平面
不垂直于平面
,那么平面
內一定不存在直線垂直于平面
.
D.若直線
不平行于平面
,且
不在平面
內,則在平面
內不存在與
平行的直線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,三國時代數學家趙爽在《周髀算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內角為
,若向弦圖內隨機拋擲500顆米粒(大小忽略不計,取
),則落在小正方形(陰影)內的米粒數大約為( )
![]()
A. 134 B. 67 C. 200 D. 250
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圓
與
軸交于
、
兩點(點
在點
的左側),
、
是分別過
、
點的圓
的切線,過此圓上的另一個點
(
點是圓上任一不與
、
重合的動點)作此圓的切線,分別交
、
于
、
兩點,且
、
兩直線交于點
.
(
)設切點
坐標為
,求證:切線
的方程為
.
(
)設點
坐標為
,試寫出
與
的關系表達式(寫出詳細推理與計算過程).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定點
,定直線
,動圓
經過點
且與直線
相切.
(I)求動圓圓心
的軌跡方程;
(II)設點
為曲線
上不同的兩點,且
,過
兩點分別作曲線
的兩條切線,且二者相交于點
,求
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P(2,2),圓
,過點P的動直線l與圓C交于A,B兩點,線段AB的中點為M,O為坐標原點.
(1)求點M的軌跡方程;
(2)當|OP|=|OM|時,求l的方程及△POM的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com