【題目】若F1,F2是雙曲線
的兩個(gè)焦點(diǎn)
(1)若雙曲線上一點(diǎn)M到左焦點(diǎn)F1的距離等于7,求點(diǎn)M到右焦點(diǎn)F2的距離;
(2)若P是雙曲線左支上的點(diǎn),且|PF1|·|PF2|=32,試求△F1PF2的面積.
【答案】(1)
;(2)
.
【解析】
(1)根據(jù)雙曲線的定義解答;
(2)利用雙曲線的方程求得|F1F2|和|PF1|﹣|PF2|,進(jìn)而利用配方法求得|PF1|2+|PF2|2的值代入余弦定理求得cos∠F1PF2 的值進(jìn)而求得∠F1PF2從而得到三角形的面積.
解:(1)由雙曲線的定義得||MF1|-|MF2||=2a=6,
又雙曲線上一點(diǎn)M到它左焦點(diǎn)的距離等于7,假設(shè)點(diǎn)M到右焦點(diǎn)的距離等于x,
則|7-x|=6,解得x=1或x=13.
由于c-a=5-3=2,1<2,13>2,
故點(diǎn)M到另一個(gè)焦點(diǎn)的距離為13.
(2)將||PF2|-|PF1||=2a=6,兩邊平方得
|PF1|2+|PF2|2-2|PF1|·|PF2|=36,
∴|PF1|2+|PF2|2=36+2|PF1|·|PF2|=36+2×32=100.
在△F1PF2中,由余弦定理得cos∠F1PF2=![]()
=
=0,
∴∠F1PF2=90°,
∴△F1PF2的面積為
|PF1|·|PF2|=
×32=16.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足2Sn=3an﹣1,其中n∈N* .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)anbn=
,求數(shù)列{bn}的前n項(xiàng)和為Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等比數(shù)列
的前
項(xiàng)和為
,
,且
,
,
成等差數(shù)列,數(shù)列
滿足
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)
,數(shù)列
的前
項(xiàng)和為
,若對任意
,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+bx2+cx﹣1當(dāng)x=﹣2時(shí)有極值,且在x=﹣1處的切線的斜率為﹣3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[﹣1,2]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某飛行器在4千米高空飛行,從距著陸點(diǎn)A的水平距離10千米處開始下降,已知下降飛行軌跡為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為( ) ![]()
A.y=
﹣
x
B.y=
x3﹣
x
C.y=
x3﹣x
D.y=﹣
x3+
x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC中,E,F(xiàn)分別為AB,AC邊的中點(diǎn),N為BC邊上一點(diǎn),且CN=
BC,將△AEF沿EF折到△A′EF的位置,使平面A′EF⊥平面EF﹣CB,M為EF中點(diǎn). ![]()
(1)求證:平面A′MN⊥平面A′BF;
(2)求二面角E﹣A′F﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+bx(a,b∈R)在點(diǎn)(1,f(1))處的切線方程為x﹣2y﹣2=0.
(1)求a,b的值;
(2)當(dāng)x>1時(shí),f(x)+
<0恒成立,求實(shí)數(shù)k的取值范圍;
(3)證明:當(dāng)n∈N* , 且n≥2時(shí),
+
+…+
>
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為棱AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且B1E⊥C1F,A1C1⊥B1C1.
(1)求證:DE∥平面A1C1F;
(2)求證:B1E⊥平面A1C1F
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的中心在原點(diǎn),離心率等于
,它的一個(gè)短軸端點(diǎn)恰好是拋物線
的焦點(diǎn).
(1)求橢圓
的方程;
(2)已知
、
是橢圓上的兩點(diǎn),
是橢圓上位于直線
兩側(cè)的動(dòng)點(diǎn).
①若直線
的斜率為
,求四邊形
面積的最大值;
②當(dāng)
運(yùn)動(dòng)時(shí),滿足
,試問直線
的斜率是否為定值,請說明理由.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com