【題目】已知函數(shù)f(x)=
的定義域是一切實(shí)數(shù),則m的取值范圍是( )
A.0<m≤4
B.0≤m≤1
C.m≥4
D.0≤m≤4
【答案】D
【解析】解:若函數(shù)f(x)=
的定義域是一切實(shí)數(shù),
則等價為mx2+mx+1≥0恒成立,
若m=0,則不等式等價為1≥0,滿足條件,
若m≠0,則滿足
,
即
,
解得0<m≤4,
綜上0≤m≤4,
故選:D
【考點(diǎn)精析】本題主要考查了函數(shù)的定義域及其求法的相關(guān)知識點(diǎn),需要掌握求函數(shù)的定義域時,一般遵循以下原則:①
是整式時,定義域是全體實(shí)數(shù);②
是分式函數(shù)時,定義域是使分母不為零的一切實(shí)數(shù);③
是偶次根式時,定義域是使被開方式為非負(fù)值時的實(shí)數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零才能正確解答此題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是二次函數(shù),若f(0)=0且f(x+1)﹣f(x)=x+1,求函數(shù)f(x)的解析式,并求出它在區(qū)間[﹣1,3]上的最大、最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將繪有函數(shù)f(x)=2sin(ωx+φ)(ω>0,
<φ<π)部分圖象的紙片沿x軸折成直二面角,若AB之間的空間距離為
,則f(﹣1)=( ) ![]()
A.﹣2
B.2
C.- ![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某天連續(xù)有
節(jié)課,其中語文、英語、物理、化學(xué)、生物
科各
節(jié),數(shù)學(xué)
節(jié).在排課時,要求生物課不排第
節(jié),數(shù)學(xué)課要相鄰,英語課與數(shù)學(xué)課不相鄰,則不同排法的種數(shù)是( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+2x+c(a≠0),函數(shù)f(x)對于任意的都滿足條件f(1+x)=f(1﹣x).
(1)若函數(shù)f(x)的圖象與y軸交于點(diǎn)(0,2),求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)在區(qū)間(0,1)上有零點(diǎn),求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓
:
的離心率為
,
分別為橢圓
的左、右頂點(diǎn),
為右焦點(diǎn),直線
與
的交點(diǎn)到
軸的距離為
,過點(diǎn)
作
軸的垂線
,
為
上異于點(diǎn)
的一點(diǎn),以
為直徑作圓
.
![]()
(1)求
的方程;
(2)若直線
與
的另一個交點(diǎn)為
,證明:直線
與圓
相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品最近30天的價格f(t)(元)與時間t滿足關(guān)系式:f(t)=
,且知銷售量g(t)與時間t滿足關(guān)系式 g(t)=﹣t+30,(0≤t≤30,t∈N+),求該商品的日銷售額的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com