【題目】通過市場調(diào)查,得到某種產(chǎn)品的資金投入
(單位:萬元)與獲得的利潤
(單位:千元)的數(shù)據(jù),如表所示
資金投入 | 2 | 3 | 4 | 5 |
利潤 | 2 | 3 | 5 | 6 |
(1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程
;
(2)該產(chǎn)品的資金投入每增加
萬元,獲得利潤預計可增加多少千元?若投入資金
萬元,則獲得利潤的估計值為多少千元?
參考公式:![]()
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,梯形
是平面圖形
的直觀圖.其中
.
![]()
(1)如何利用斜二測畫法的規(guī)則畫出原四邊形?
(2)在問題(1)中,如何求出水平放置的平面圖形與直觀圖的面積?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著“中華好詩詞”節(jié)目的播出,掀起了全民誦讀傳統(tǒng)詩詞經(jīng)典的熱潮.某社團為調(diào)查大學生對于“中華詩詞”的喜好,從甲、乙兩所大學各隨機抽取了40名學生,記錄他們每天學習“中華詩詞”的時間,并整理得到如下頻率分布直方圖:
![]()
根據(jù)學生每天學習“中華詩詞”的時間,可以將學生對于“中華詩詞”的喜好程度分為三個等級 :
![]()
(Ⅰ)從甲大學中隨機選出一名學生,試估計其“愛好”中華詩詞的概率;
(Ⅱ)從兩組“癡迷”的同學中隨機選出2人,記
為選出的兩人中甲大學的人數(shù),求
的分布列和數(shù)學期望
;
(Ⅲ)試判斷選出的這兩組學生每天學習“中華詩詞”時間的平均值
與
的大小,及方差
與
的大。(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】節(jié)約資源和保護環(huán)境是中國的基本國策.某化工企業(yè),積極響應國家要求,探索改良工藝,使排放的廢氣中含有的污染物數(shù)量逐漸減少.已知改良工藝前所排放的廢氣中含有的污染物數(shù)量為
,首次改良后所排放的廢氣中含有的污染物數(shù)量為
.設改良工藝前所排放的廢氣中含有的污染物數(shù)量為
,首次改良工藝后所排放的廢氣中含有的污染物數(shù)量為
,則第n次改良后所排放的廢氣中的污染物數(shù)量
,可由函數(shù)模型
給出,其中n是指改良工藝的次數(shù).
(1)試求改良后所排放的廢氣中含有的污染物數(shù)量的函數(shù)模型;
(2)依據(jù)國家環(huán)保要求,企業(yè)所排放的廢氣中含有的污染物數(shù)量不能超過
,試問至少進行多少次改良工藝后才能使得該企業(yè)所排放的廢氣中含有的污染物數(shù)量達標.
(參考數(shù)據(jù):取
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
是偶函數(shù)
(1)求k的值;
(2)若函數(shù)
的圖象與直線
沒有交點,求b的取值范圍;
(3)設
,若函數(shù)
與
的圖象有且只有一個公共點,求實數(shù)
的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某生產(chǎn)企業(yè)研發(fā)了一種新產(chǎn)品,該新產(chǎn)品在某網(wǎng)店試銷一個階段后得到銷售單價
和月銷售量
之間的一組數(shù)據(jù),如下表所示:
銷售單價 | 9 | 9.5 | 10 | 10.5 | 11 |
月銷售量 | 11 | 10 | 8 | 6 | 5 |
(1)根據(jù)統(tǒng)計數(shù)據(jù),求出
關于
的回歸直線方程,并預測月銷售量不低于12萬件時銷售單價的最大值;
(2)生產(chǎn)企業(yè)與網(wǎng)店約定:若該新產(chǎn)品的月銷售量不低于10萬件,則生產(chǎn)企業(yè)獎勵網(wǎng)店1萬元;若月銷售量不低于8萬件且不足10萬件,則生產(chǎn)企業(yè)獎勵網(wǎng)店5000元;若月銷售量低于8萬件,則沒有獎勵.現(xiàn)用樣本估計總體,從上述5個銷售單價中任選2個銷售單價,下個月分別在兩個不同的網(wǎng)店進行銷售,求這兩個網(wǎng)店下個月獲得獎勵的總額
的分布列及其數(shù)學期望.
參考公式:對于一組數(shù)據(jù)
,
,…,
,其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
參考數(shù)據(jù):
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,關于x的方程
,下列四個結(jié)論中正確的有( )
①存在實數(shù)k,使得方程恰有2個不同的實根;
②存在實數(shù)k,使得方程恰有4個不同的實根;
③存在實數(shù)k,使得方程恰有5個不同的實根;
④存在實數(shù)k,使得方程恰有8個不同的實根.
A.1個B.2個C.3個D.4個
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com