【題目】如圖,在四棱錐
中,已知
平面
,
為等邊三角形,
,
,
與平面
所成角的正切值為
.
![]()
(Ⅰ)證明:
平面
;
(Ⅱ)若
是
的中點,求二面角
的余弦值.
【答案】(Ⅰ)見解析.(Ⅱ)
.
【解析】
(Ⅰ)先證明
為
與平面
所成的角,于是可得
,于是
.又由題意得到
,故得
,再根據(jù)線面平行的性質(zhì)可得所證結(jié)論. (Ⅱ) 取
的中點
,連接
,可證得
.建立空間直角坐標(biāo)系,分別求出平面
和平面
的法向量,根據(jù)兩個法向量夾角的余弦值得到二面角的余弦值.
(Ⅰ)證明:因為
平面
,
平面
,
所以![]()
又
,
,
所以
平面
,
所以
為
與平面
所成的角.
在
中,
,
所以![]()
所以在
中,
,
.
又
,
所以在底面
中,
,
又
平面
,
平面
,
所以
平面
.
(Ⅱ)解:取
的中點
,連接
,則
,由(Ⅰ)知
,
所以
,
分別以
,
,
為
,
,
軸建立空間直角坐標(biāo)系
.
![]()
則
,
,
,
所以
,
,![]()
設(shè)平面
的一個法向量為
,
由
,即
,得
,
令
,則
.
設(shè)平面
的一個法向量為
,
由
,即
,得
,
令
,則
.
所以
,
由圖形可得二面角
為銳角,
所以二面角
的余弦值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動車行經(jīng)人行道時,應(yīng)當(dāng)減速慢行;遇行人正在通過人行道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”, 《中華人民共和國道路交通安全法》第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個月內(nèi)駕駛員“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數(shù) | 120 | 105 | 100 | 90 | 85 |
(1)請利用所給數(shù)據(jù)求違章人數(shù)
與月份
之間的回歸直線方程
;
(2)預(yù)測該路口9月份的不“禮讓斑馬線”違章駕駛員人數(shù).
參考公式:
,
.
參考數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
(
)過點
,短軸一個端點到右焦點的距離為2.
(1)求橢圓C的方程;
(2)設(shè)過定點
的直線1與橢圓交于不同的兩點A,B,若坐標(biāo)原點O在以線段AB為直徑的圓上,求直線l的斜率k.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間與極值;
(Ⅱ)若不等式
對任意
恒成立,求實數(shù)
的取值范圍;
(Ⅲ)求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直三棱柱
中,D點為棱AB的中點.
![]()
求證:
平面
;
若
,
,求二面角
的余弦值;
若
,
,
兩兩垂直,求證:此三棱柱為正三棱柱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一橢圓形溜冰場,長軸長100米,短軸長為60米,現(xiàn)要在這溜冰場上劃定一個各頂點都在溜冰場邊界上的矩形區(qū)域,且使這個區(qū)域的面積最大,應(yīng)把這個矩形的頂點定位在何處?并求出此矩形的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值.由測量表得到如下頻率分布直方圖
(1)補(bǔ)全上面的頻率分布直方圖(用陰影表示);
(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中間值作為代表,據(jù)此估計這種產(chǎn)品質(zhì)量指標(biāo)值服從正態(tài)分布Z(μ,σ2),其中μ近似為樣本平均值
,σ2近似為樣本方差s2(組數(shù)據(jù)取中間值);
①利用該正態(tài)分布,求從該廠生產(chǎn)的產(chǎn)品中任取一件,該產(chǎn)品為合格品的概率;
②該企業(yè)每年生產(chǎn)這種產(chǎn)品10萬件,生產(chǎn)一件合格品利潤10元,生產(chǎn)一件不合格品虧損20元,則該企業(yè)的年利潤是多少?
參考數(shù)據(jù):
=5.1,若Z~N(μ,σ2),則P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】郴州市某中學(xué)從甲乙兩個教師所教班級的學(xué)生中隨機(jī)抽取100人,每人分別對兩個教師進(jìn)行評分,滿分均為100分,整理評分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組:
,
,
,
,
,
.得到甲教師的頻率分布直方圖,和乙教師的頻數(shù)分布表:
![]()
乙教師分?jǐn)?shù)頻數(shù)分布表 | |
分?jǐn)?shù)區(qū)間 | 頻數(shù) |
| 3 |
| 3 |
| 15 |
| 19 |
| 35 |
| 25 |
(1)在抽樣的100人中,求對甲教師的評分低于70分的人數(shù);
(2)從對乙教師的評分在
范圍內(nèi)的人中隨機(jī)選出2人,求2人評分均在
范圍內(nèi)的概率;
(3)如果該校以學(xué)生對老師評分的中位數(shù)是否大于80分作為衡量一個教師是否可評為該年度該校優(yōu)秀教師的標(biāo)準(zhǔn),則甲、乙兩個教師中哪一個可評為年度該校優(yōu)秀教師?(精確到0.1)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com