【題目】有一種大型商品,A,B兩地都有出售,且價格相同,某地居民從兩地之一購得商品后,運回的費用是:每單位距離A地的運費是B地運費的3倍.已知A,B兩地相距10 km,顧客選A或B地購買這件商品的標準是:包括運費和價格的總費用較低.求A,B兩地的售貨區域的分界線的曲線形狀,并指出曲線上、曲線內、曲線外的居民應如何選擇購貨地點.
![]()
【答案】見解析
【解析】
以A,B所確定的直線為x軸,線段AB的中點O為坐標原點,建立平面直角坐標系,設某地P的坐標為(x,y),且P地居民選擇A地購買商品便宜,由題得
,化簡即得解.
如圖所示,以A,B所確定的直線為x軸,線段AB的中點O為坐標原點,建立平面直角坐標系,則A(-5,0),B(5,0).
設某地P的坐標為(x,y),且P地居民選擇A地購買商品便宜,
并設A地的運費為3a元/km,B地的運費為a 元/km,
∵價格+QA地運費<價格+QB地運費,
∴
,
∵a>0,∴
,
兩邊平方得9(x+5)2+9y2<(x-5)2+y2,
即
.
∴以點C
為圓心,
為半徑的圓是這兩地的售貨區域的分界線.
圓C內的居民從A地購貨便宜;圓C外的居民從B地購貨便宜;圓C上的居民從A,B兩地購貨的總費用相等,可隨意從A,B兩地之一購貨.
科目:高中數學 來源: 題型:
【題目】隨著資本市場的強勢進入,互聯網共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在
市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中隨機抽取了200人進行抽樣分析,得到下表(單位:人):
經常使用 | 偶爾或不用 | 合計 | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據以上數據,能否在犯錯誤的概率不超過0.15的前提下認為
市使用共享單車情況與年齡有關?
(2)現從所有抽取的30歲以上的網民中利用分層抽樣抽取5人,
求這5人中經常使用、偶爾或不用共享單車的人數;
從這5人中,在隨機選出2人贈送一件禮品,求選出的2人中至少有1人經常使用共享單車的概率.
參考公式:
,其中
.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合A={x|x2﹣3x+2=0},B={x|x2+2(a﹣1)x+(a2﹣5)=0}
(1)若A∩B={2},求實數a的值;
(2)若A∪B=A,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市“網約車”的現行計價標準是:路程在
以內(含
)按起步價
元收取,超過
后的路程按
元/
收取,但超過
后的路程需加收
的返空費(即單
價為
元/
).
(1) 將某乘客搭乘一次“網約車”的費用
(單位:元)表示為行程
,
單位:
)的分段函數;
(2) 某乘客的行程為
,他準備先乘一輛“網約車”行駛
后,再換乘另一輛
“網約車”完成余下行程,請問:他這樣做是否比只乘一輛“網約車”完成全部行程更省錢?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)求過點P(2,3),且在兩坐標軸上的截距相等的直線方程.
(2)已知直線l平行于直線4x+3y-7=0,直線l與兩坐標軸圍成的三角形的周長是15,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知Sn為數列{an}的前n項和,且有a1=1,Sn+1=an+1(n∈N*).
(1)求數列{an}的通項an;
(2)若bn=
,求數列{bn}的前n項和Tn;
(3)設ck=
,{ck}的前n項和為An , 是否存在最小正整數m,使得不等式An<m對任意正整數n恒成立?若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ax2+bx+c,且f(1)=-
,3a>2c>2b,求證:
(1)a>0,且-3<
<-
;
(2)函數f(x)在區間(0,2)內至少有一個零點;
(3)設x1,x2是函數f(x)的兩個零點,則
≤|x1-x2|<
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學為了解高二學生對“地方歷史”校本課程的喜歡是否與在本地成長有關,在全校高二學生中隨機抽取了20名,得到一組不完全的統計數據如下表:
![]()
(1)補齊上表數據,并分別從被抽取的喜歡“地方歷史”校本課程與不喜歡“地方歷史”校本課程的學生中各選1名做進一步訪談,求至少有1名學生屬于在本地成長的概率;
(2)試回答:能否在犯錯誤的概率不超過0.10的前提下認為“是否喜歡地方歷史校本課程與在本地成長有關”.
附:
![]()
(參考公式:
,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市擬興建九座高架橋,新聞媒體對此進行了問卷調查,在所有參與調查的市民中,持“支持”、“保留”和“不支持”態度的人數如下表所示:
![]()
(1)在所有參與調查的人中,用分層抽樣的方法抽取部分市民做進一步調研(不同態度的群體中亦按年齡分層抽樣),已知從“保留”態度的人中抽取了19人,則在“支持”態度的群體中,年齡在40歲以下(含40歲)的人有多少被抽取;
(2)在持“不支持”態度的人中,用分層抽樣的方法抽取6人做進一步的調研,將此6人看作一個總體,在這6人中任意選取2人,求至少有1人在40歲以上的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com