已知數(shù)列
滿足:
且
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)令
,數(shù)列
的前項(xiàng)和為
,求證:
時,
且![]()
(1)
;(2)詳見解析.
解析試題分析:(1)由![]()
令
,然后用迭加法求出數(shù)列
的通項(xiàng)公式,最后求數(shù)列
的通項(xiàng)公式;
(2)由(1)知
,寫出
及
并化簡,利用函數(shù)的思想解決與數(shù)列有關(guān)的不等式問題.
解:(1)易知:
,![]()
令
得,![]()
若
,則![]()
![]()
當(dāng)
時,
也滿足上式,故![]()
所以
6分
(2)易知:
![]()
![]()
![]()
![]()
8分
先證不等式
時,![]()
令
,則![]()
∴
在
上單調(diào)遞減,即![]()
同理:令
,則![]()
∴
在
上單調(diào)遞增,即
,得證.
取
,得
,所以![]()
14分
考點(diǎn):1、數(shù)列的遞推公式;2、函數(shù)思想在數(shù)列綜合問題中的應(yīng)用.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列
的前n項(xiàng)和記為
,點(diǎn)(n,
)在曲線
(
)上
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)
,求數(shù)列
的前n項(xiàng)和
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N*).
(1)寫出a2,a3的值(只寫結(jié)果),并求出數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
+
+
+…+
,若對任意的正整數(shù)n,當(dāng)m∈[-1,1]時,不等式t2-2mt+
>bn恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列
的各項(xiàng)均為正數(shù),且
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)
,求數(shù)列
的前n項(xiàng)和
;
(3)在(2)的條件下,求使
恒成立的實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(其中
),區(qū)間
.
(1)求區(qū)間
的長度(注:區(qū)間
的長度定義為
);
(2)把區(qū)間
的長度記作數(shù)列
,令
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列
的前
項(xiàng)和為
,
,
,等差數(shù)列
滿足
,
.
(1)求數(shù)列
,數(shù)列
的通項(xiàng)公式;
(2)若對任意的
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
各項(xiàng)均為正數(shù)的數(shù)列{an}中,設(shè)
,
,且
,
.
(1)設(shè)
,證明數(shù)列{bn}是等比數(shù)列;
(2)設(shè)
,求集合
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的前
項(xiàng)和
滿足
,又
,
.
(1)求實(shí)數(shù)k的值;
(2)問數(shù)列
是等比數(shù)列嗎?若是,給出證明;若不是,說明理由;
(3)求出數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com