【題目】如圖,等邊三角形
的中線
與中位線
相交于
,已知
是
繞
旋轉(zhuǎn)過程中的一個(gè)圖形,給出以下四個(gè)命題:①
平面
;②平面
平面
;③動(dòng)點(diǎn)
在平面
上的射影在線段
上;④異面直線
與
不可能垂直. 其中正確命題的個(gè)數(shù)是( )
![]()
A. 1 B. 2 C. 3 D. 4
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C的兩個(gè)焦點(diǎn)是F1、F2 , 過F1的直線與橢圓C交于P、Q,若|PF2|=|F1F2|,且5|PF1|=6|F1Q|,則橢圓的離心率為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動(dòng)點(diǎn),且![]()
(1)求證:不論
為何值,總有平面BEF⊥平面ABC;
(2)當(dāng)λ為何值時(shí),平面BEF⊥平面ACD ?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】語句p:曲線x2﹣2mx+y2﹣4y+2m+7=0表示圓;語句q:曲線
+
=1表示焦點(diǎn)在x軸上的橢圓,若p∨q為真命題,¬p為真命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)
在定義域內(nèi)存在區(qū)間
,使得該函數(shù)在區(qū)間
上的值域?yàn)?/span>
,則稱函數(shù)
是該定義域上的“和諧函數(shù)”.
(1)求證:函數(shù)
是“和諧函數(shù)”;
(2)若函數(shù)
是“和諧函數(shù)”,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在實(shí)數(shù)集R中,已知集合A={x|
≥0}和集合B={x||x﹣1|+|x+1|≥2},則A∩B=( )
A.{﹣2}∪[2,+∞)
B.(﹣∞,﹣2]∪[2,+∞)
C.[2,+∞)
D.{0}∪[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
,圓
.
(Ⅰ)若直線
過點(diǎn)
且到圓心
的距離為1,求直線
的方程;
(Ⅱ)設(shè)過點(diǎn)
的直線
與圓
交于
兩點(diǎn)(
的斜率為正),當(dāng)
時(shí),求以線段
為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種零件,每個(gè)零件的成本為40元,出廠單價(jià)定為60元.該廠為鼓勵(lì)銷售商訂購,決定當(dāng)一次訂購量超過100個(gè)時(shí),每多訂購一個(gè),訂購的全部零件的出廠單價(jià)就降低0.02元,但實(shí)際出廠單價(jià)不能低于51元.
(1)當(dāng)一次訂購量為多少個(gè)時(shí),零件的實(shí)際出廠單價(jià)恰降為51元?
(2)設(shè)一次訂購量為
個(gè),零件的實(shí)際出廠單價(jià)為
元,寫出函數(shù)
的表達(dá)式;
(3)當(dāng)銷售商一次訂購500個(gè)零件時(shí),該廠獲得的利潤是多少元? (工廠售出一個(gè)零件的利潤=實(shí)際出廠單價(jià)-單件成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
為常函數(shù))是奇函數(shù).
(1)判斷函數(shù)
在
上的單調(diào)性,并用定義法證明你的結(jié)論;
(2)若對(duì)于區(qū)間
上的任意
值,使得
不等式恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com