【題目】已知圓C:(x﹣1)2+(y﹣2)2=25及直線l:(2m+1)x+(m+1)y=7m+4.(m∈R)
(1)證明:不論m取什么實(shí)數(shù),直線l與圓C恒相交;
(2)求直線l與圓C所截得的弦長(zhǎng)的最短長(zhǎng)度及此時(shí)直線l的方程.
【答案】
(1)解:直線方程l:(2m+1)x+(m+1)y=7m+4,可以改寫為m(2x+y﹣7)+x+y﹣4=0,所以直線必經(jīng)過(guò)直線2x+y﹣7=0和x+y﹣4=0的交點(diǎn).由方程組
解得
即兩直線的交點(diǎn)為A(3,1),
又因?yàn)辄c(diǎn)A(3,1)與圓心C(1,2)的距離
,
所以該點(diǎn)在C內(nèi),故不論m取什么實(shí)數(shù),直線l與圓C恒相交
(2)解:連接AC,當(dāng)直線l是AC的垂線時(shí),此時(shí)的直線l與圓C相交于B、D.BD為直線l被圓所截得的最短弦長(zhǎng).此時(shí),
,所以
.即最短弦長(zhǎng)為
.
又直線AC的斜率
,所以直線BD的斜率為2.
此時(shí)直線方程為:y﹣1=2(x﹣3),即2x﹣y﹣5=0
【解析】(1)要證直線l無(wú)論m取何實(shí)數(shù)與圓C恒相交,即要證直線l橫過(guò)過(guò)圓C內(nèi)一點(diǎn),方法是把直線l的方程改寫成m(2x+y﹣7)+x+y﹣4=0可知,直線l一定經(jīng)過(guò)直線2x+y﹣7=0和x+y﹣4=0的交點(diǎn),聯(lián)立兩條直線的方程即可求出交點(diǎn)A的坐標(biāo),然后利用兩點(diǎn)間的距離公式求出AC之間的距離d,判斷d小于半徑5,得證;(2)根據(jù)圓的對(duì)稱性可得過(guò)點(diǎn)A最長(zhǎng)的弦是直徑,最短的弦是過(guò)A垂直于直徑的弦,所以連接AC,過(guò)A作AC的垂線,此時(shí)的直線與圓C相交于B、D,弦BD為最短的弦,接下來(lái)求BD的長(zhǎng),根據(jù)垂徑定理可得A是BD的中點(diǎn),利用(1)圓心C到BD的距離其實(shí)就是|AC|的長(zhǎng)和圓的半徑|BC|的長(zhǎng),根據(jù)勾股定理可求出
|BD|的長(zhǎng),求得|BD|的長(zhǎng)即為最短弦的長(zhǎng);根據(jù)點(diǎn)A和點(diǎn)C的坐標(biāo)求出直線AC的斜率,然后根據(jù)兩直線垂直時(shí)斜率乘積為﹣1求出直線BD的斜率,又直線BD過(guò)A(3,1),根據(jù)斜率與A點(diǎn)坐標(biāo)即可寫出直線l的方程.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
既有一個(gè)極小值又有一個(gè)極大值,求
的取值范圍;
(3)若存在
,使得當(dāng)
時(shí),
的值域是
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系
中,橢圓
:
(
)的離心率是
,拋物線
:
的焦點(diǎn)
是
的一個(gè)頂點(diǎn).
(1)求橢圓
的方程;
(2)設(shè)
是
上動(dòng)點(diǎn),且位于第一象限,
在點(diǎn)
處的切線
與
交于不同的兩點(diǎn)
,
,線段
的中點(diǎn)為
,直線
與過(guò)
且垂直于
軸的直線交于點(diǎn)
.
(i)求證:點(diǎn)
在定直線上;
![]()
(ii)直線
與
軸交于點(diǎn)
,記
的面積為
,
的面積為
,求
的最大值及取得最大值時(shí)點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐
中,四邊形
是菱形,
,又
平面
,
點(diǎn)
是棱
的中點(diǎn),
在棱
上,且
.
(1)證明:平面
平面
;
(2)若
平面
,求四棱錐
的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面給出的關(guān)系式中正確的個(gè)數(shù)是( )
①
=
②
=
③
2=|
|2
④(
)
=
(
)
⑤|
|≤
.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sinx(sinx+
cosx)﹣1(其中x∈R),求:
(1)函數(shù)f(x)的最小正周期;
(2)函數(shù)f(x)的單調(diào)減區(qū)間;
(3)函數(shù)f(x)圖象的對(duì)稱軸和對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為一簡(jiǎn)單組合體,其底面 ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2. ![]()
(1)求證:BE∥平面PDA;
(2)求四棱錐B﹣CEPD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ![]()
(1)若m=1,求函數(shù)f(x)的定義域.
(2)若函數(shù)f(x)的值域?yàn)镽,求實(shí)數(shù)m的取值范圍.
(3)若函數(shù)f(x)在區(qū)間
上是增函數(shù),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
,解不等式
;
(2)若存在實(shí)數(shù)
,使得不等式
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com