設函數(shù)
(1)試問函數(shù)能否在處取得極值,請說明理由;
(2)若,當時,函數(shù)的圖像有兩個公共點,求的取值范圍.
(1)函數(shù)不能在處取得極值,理由詳見試題解析;
(2)的取值范圍是
.
解析試題分析:(1)先對函數(shù)求導,因為函數(shù)
在實數(shù)
上單調遞增,故函數(shù)不可再
處取得極值.
(2)函數(shù)
與
的圖像在
有兩個公共點,即方程
在
有兩解,結合函數(shù)的單調性可求的取值范圍.
(1)
,當
時,
,
而此時
,函數(shù)
在實數(shù)
上單調遞增,故函數(shù)不可再
處取得極值.
(2)當
時,
,函數(shù)
與
的圖像在
有兩個公共點,即方程
在
有兩解,
方程可轉化為
,設
,
則
,令
,
解得
,所以
函數(shù)在
遞增,在
上遞減.
,所以要使得方程有兩解需
.
考點:導函數(shù)的綜合應用、構造思想、轉化與化歸思想.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
.
(1)當a=l時,求
的單調區(qū)間;
(2)若函數(shù)
在
上是減函數(shù),求實數(shù)a的取值范圍;
(3)令
,是否存在實數(shù)a,當
(e是自然對數(shù)的底數(shù))時,函數(shù)g(x)最小值是3,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(
為常數(shù),
是自然對數(shù)的底數(shù)),曲線
在點
處的切線與
軸平行.
(Ⅰ)求
的值;
(Ⅱ)求
的單調區(qū)間;
(Ⅲ)設
,其中
為
的導函數(shù).證明:對任意
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=
x3-ax+1.
(1)求x=1時,f(x)取得極值,求a的值;
(2)求f(x)在[0,1]上的最小值;
(3)若對任意m∈R,直線y=-x+m都不是曲線y=f(x)的切線,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)
.
(1)若函數(shù)
在
上為減函數(shù),求實數(shù)
的最小值;
(2)若存在
,使
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
.
(1)當
時,求
在
處的切線方程;
(2)設函數(shù)
,
(ⅰ)若函數(shù)
有且僅有一個零點時,求
的值;
(ⅱ)在(ⅰ)的條件下,若
,
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某公司經銷某種產品,每件產品的成本為6元,預計當每件產品的售價為
元(
)時,一年的銷售量為
萬件。
(1)求公司一年的利潤y(萬元)與每件產品的售價x的函數(shù)關系;
(2)當每件產品的售價為多少時,公司的一年的利潤y最大,求出y最大值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com