【題目】設函數f(x)=|x﹣4|,g(x)=|2x+1|.
(1)解不等式f(x)<g(x);
(2)若2f(x)+g(x)>ax對任意的實數x恒成立,求a的取值范圍.
【答案】
(1)解:f(x)<g(x)等價于(x﹣4)2<(2x+1)2,∴x2+4x﹣5>0,
∴x<﹣5或x>1,
∴不等式的解集為{x|x<﹣5或x>1}
(2)解:令H(x)=2f(x)+g(x)=
,G(x)=ax,
2f(x)+g(x)>ax對任意的實數x恒成立,即H(x)的圖象恒在直線G(x)=ax的上方.
故直線G(x)=ax的斜率a滿足﹣4≤a<
,即a的范圍為[﹣4,
)
【解析】(1)f(x)<g(x)等價于(x﹣4)2<(2x+1)2 , 從而求得不等式f(x)<g(x)的解集.(2)由題意2f(x)+g(x)>ax對任意的實數x恒成立,即H(x)的圖象恒在直線G(x)=ax的上,即可求得a的范圍.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥面ABCD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分別為PC,CD的中點 ![]()
(1)求證:平面ABE⊥平面BEF
(2)設PA=a,若平面EBD與平面ABCD所成銳二面角θ∈[
,
],求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四邊形ABCD中,∠BAD=120°,∠BCD=60°,cosD=﹣
,AD=DC=2. ![]()
(Ⅰ)求cos∠DAC及AC的長;
(Ⅱ)求BC的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x+2|+|x+a|(a∈R).
(Ⅰ)若a=5,求函數f(x)的最小值,并寫出此時x的取值集合;
(Ⅱ)若f(x)≥3恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|3≤
≤27},B={x|
>1}.
(1)分別求A∩B,(
)∪A;
(2)已知集合C={x|1<x<a},若CA,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=
,O為AC與BD的交點,E為棱PB上一點. ![]()
(Ⅰ)證明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱錐P﹣EAD的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com