【題目】在直角坐標系
中,以坐標原點O為極點,以x軸正半軸為極軸建立極坐標系.已知曲線
(t為參數(shù)),曲線
;
(1)將曲線
化成普通方程,將曲線
化成參數(shù)方程;
(2)判斷曲線
和曲線
的位置關系.
【答案】
(1)解:∵ ,∴ ,
代入 得, ,即 .
∴曲線 的普通方程是 .
將 代入曲線 的方程 ,得
即 .
設 ,
得曲線 的參數(shù)方程:
( 為參數(shù))
(2)解:由(1)知,曲線 是經(jīng)過點 的直線,曲線 是以 為圓心半徑為 的圓.
∵ ,
∴ 在曲線 內(nèi),
∴曲線 和曲線 相交.
【解析】分析:本題主要考查了參數(shù)方程化成普通方程,解決問題的關鍵是(1)利用極坐標與普通坐標之間的轉(zhuǎn)化即可求出曲線
的普通方程,從而可得到曲線
的參數(shù)方程,利用消去參數(shù)的方程即可求出直線的普通方程;(2)求出曲線曲線
的圓心到直線的距離并與半徑作比較,即可得到直線與曲線
的位置關系.
科目:高中數(shù)學 來源: 題型:
【題目】某職稱晉級評定機構(gòu)對參加某次專業(yè)技術考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失敗(滿分為100分).
![]()
(1)求圖中
的值;
(2)估計該次考試的平均分
(同一組中的數(shù)據(jù)用該組的區(qū)間中點值代表);
(3)根據(jù)已知條件完成下面
列聯(lián)表,并判斷能否有85%的把握認為“晉級成功”與性別有關?
(參考公式:
,其中
)
| 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線
:
(t為參數(shù)).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的坐標方程為
.
(1)將曲線C的極坐標方程化為直坐標方程;
(2)設點M的直角坐標為
,直線l與曲線C的交點為A,B,求|MA||MB|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的左焦點
的離心率為
是
和
的等比中項.
(1)求曲線
的方程;
(2)傾斜角為
的直線過原點
且與
交于
兩點,傾斜角為
的直線過
且與
交于
兩點,若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓
的左、右焦點分別為
,且離心率為
,點
為橢圓上一動點,
內(nèi)切圓面積的最大值為
.
(1)求橢圓的方程;
(2)設橢圓的左頂點為
,過右焦點
的直線
與橢圓相交于
兩點,連接
并延長分別交直線
于
兩點,以
為直徑的圓是否恒過定點?若是,請求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,點P是平面ABCD外一點,M是PC的中點,在DM上取一點G,過G和AP作平面交平面BDM于GH.求證: ![]()
(1)AP∥平面BDM;
(2)AP∥GH.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+1)﹣loga(1﹣x),a>0且a≠1.
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并予以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),且當x<0時,
.
(1)求f(x)的表達式;
(2)判斷并證明函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面上,點A、C為射線PM上的兩點,點B、D為射線PN上兩點,則有
(其中S△PAB、S△PCD分別為△PAB、△PCD的面積);空間中,點A、C為射線PM上的兩點,點B、D為射線PN上的兩點,點E、F為射線PL上的兩點,則有
=___________.(其中VP-ABE、VP-CDF分別為四面體P-ABE、P-CDF的體積)。
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com