【題目】已知函數f(x)=ex+ae﹣x , 若f′(x)≥2
恒成立,則a的取值范圍為( )
A.[3,+∞)
B.(0,3]
C.[﹣3,0)
D.(﹣∞,﹣3]
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是平行四邊形,PB⊥面ABCD,BA=BD=
,AD=2,E,F分別是棱AD,PC的中點. ![]()
(1)證明:EF∥平面PAB;
(2)若二面角P﹣AD﹣B為60°,求直線EF與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E的焦點在x軸上,長軸長為4,離心率為
. (Ⅰ)求橢圓E的標準方程;
(Ⅱ)已知點A(0,1)和直線l:y=x+m,線段AB是橢圓E的一條弦且直線l垂直平分弦AB,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3. (Ⅰ)求函數f(x)在[t,t+1](t>0)上的最小值;
(Ⅱ)對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實數a的取值范圍;
(Ⅲ)證明:對一切x∈(0,+∞),都有lnx>
﹣
成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
,在一個周期內的圖象如圖所示,A為圖象的最高點,B,C為圖象與x軸的交點,且△ABC為正三角形. ![]()
(Ⅰ)求ω的值及函數f(x)的值域;
(Ⅱ)若x∈[0,1],求函數f(x)的值域;
(Ⅲ)若
,且
,求f(x0+1)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產產品x件的總成本C(x)=1000+x2(萬元),已知產品單價P(萬元)與產品件數x滿足:P2=
,生產100件這樣的產品單價為50萬元.
(1)設產量為x件時,總利潤為L(x)(萬元),求L(x)的解析式;
(2)產量x定為多少時總利潤L(x)(萬元)最大?并求最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
:
的左焦點
和上頂點
在直線
上,
為橢圓上位于
軸上方的一點且
軸,
為橢圓
上不同于
的兩點,且
.
(1)求橢圓
的標準方程;
(2)設直線
與
軸交于點
,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com