(本小題滿分12分)
已知奇函數(shù)
在
上有意義,且在(
)上是增函數(shù),
,又有函數(shù)
,若集合
,集合![]()
(1)求
的解集;
(2)求
中m的取值范圍
(1)![]()
(2)![]()
解析解:(1)![]()
為奇函數(shù)且
![]()
又
在(1,+
)上是增函數(shù) ![]()
在(-
,0)上也是增函數(shù)
故
的解集為
-------------------------------------3分
(II)由(1)知![]()
----------------------------------------------------------5分
由
<-1得
-----------------------------------------7分
即
--------------------------------9分![]()
,等號成立時![]()
故4-
]的最大值是
-----------------------------11分
從而
,即
---------------------------12分
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知二次函數(shù)
的圖像過點(diǎn)
,且有唯一的零點(diǎn)
.
(Ⅰ)求
的表達(dá)式;
(Ⅱ)當(dāng)
時,求函數(shù)
的最小值
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本大題滿分13分)
已知函數(shù)
在
處取得極值
(1)求b與a的關(guān)系;
(2)設(shè)函數(shù)
,如果
在區(qū)間(
0,1)上存在極小值,求實(shí)數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
據(jù)氣象中心觀察和預(yù)測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示,過線段OC上一點(diǎn)T(t,0)作
橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即為t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).
(1)當(dāng)t=4時,求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
2010年推出一種新型家用轎車,購買時費(fèi)用為14.4萬元,每年應(yīng)交付保險(xiǎn)費(fèi).養(yǎng)路費(fèi)及汽油費(fèi)共0.7萬元,汽車的維修費(fèi)為:第一年無維修費(fèi)用,第二年為0.2萬元,從第三年起,每年的維修費(fèi)均比上一年增加0.2萬元.
(1)設(shè)該輛轎車使用n年的總費(fèi)用(包括購買費(fèi)用.保險(xiǎn)費(fèi).養(yǎng)路費(fèi).汽油費(fèi)及維修費(fèi))為f(n),求f(n)的表達(dá)式;
(2)這種汽車使用多少年報(bào)廢最合算(即該車使用多少年,年平均費(fèi)用最少)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)
已知函數(shù)f(x)=
x
-(2a+1)
x
+3a(a+2)x+
,其中a為實(shí)數(shù)。
(1)當(dāng)a=-1時,求函數(shù)y=f(x)在[0,6]上的最大值與最小值;
(2)當(dāng)函數(shù)y=f
(x)的圖像在(0,6)上與x軸有唯一的公共點(diǎn)時,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知定義在區(qū)間(-1,1)上的函數(shù)
為奇函數(shù)。且
.(1)求實(shí)數(shù)
的值。
(2)求證:函數(shù)
(-1,1)上是增函數(shù)。
(3)解關(guān)于
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
在其定義域上滿足
.
(1)函數(shù)
的圖象是否是中心對稱圖形?若是,請指出其對稱中心(不證明);
(2)當(dāng)
時,求x的取值范圍;
(3)若
,數(shù)列
滿足
,那么:
①若
,正整數(shù)N滿足
時,對所有適合上述條件的數(shù)列
,
恒成立,求最小的N;
②若
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
小劉家要建造一個長方形無蓋蓄水池,其容積為48
,深為3
.如果池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為
120元,怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com