【題目】函數
的定義域是;若函數
的最大值為
,則實數
.
【答案】
;5
【解析】函數
中,
,解得:
,所以定義域為
.
令
,則
.
所以
.因為
的最大值為
,將
代入
,解得
.
經檢驗滿足題意.
【考點精析】掌握函數的定義域及其求法和函數的值域是解答本題的根本,需要知道求函數的定義域時,一般遵循以下原則:①
是整式時,定義域是全體實數;②
是分式函數時,定義域是使分母不為零的一切實數;③
是偶次根式時,定義域是使被開方式為非負值時的實數的集合;④對數函數的真數大于零,當對數或指數函數的底數中含變量時,底數須大于零且不等于1,零(負)指數冪的底數不能為零;求函數值域的方法和求函數最值的常用方法基本上是相同的.事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值.因此求函數的最值與值域,其實質是相同的.
科目:高中數學 來源: 題型:
【題目】設f(x)是定義在R上的偶函數,且f(2+x)=f(2﹣x),當x∈[﹣2,0]時,f(x)=(
)x﹣1,若在區間(﹣2,6)內關于x的方程f(x)﹣log a(x+2)=0,恰有4個不同的實數根,則實數a(a>0,a≠1)的取值范圍是( )
A.(
,1)
B.(1,4)
C.(1,8)
D.(8,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,a,b,c分別為A、B、C的對邊,且滿足2(a2﹣b2)=2accosB+bc
(1)求A
(2)D為邊BC上一點,CD=3BD,∠DAC=90°,求tanB.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}是等差數列,{bn}是等比數列,且b2=3,b3=9,a1=b1 , a14=b4 .
(1)求{an}的通項公式;
(2)設cn=an+bn , 求數列{cn}的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列函數中,滿足“f(x+y)=f(x)f(y)”的單調遞增函數是( )
A.f(x)=x3
B.f(x)=x ![]()
C.f(x)=3x
D.f(x)=(
)x
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex﹣ax+b.
(1)若f(x)在x=2有極小值1﹣e2 , 求實數a,b的值.
(2)若f(x)在定義域R內單調遞增,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法:
①整數集可以表示為{x|x為全體整數}或{
};
②方程組
的解集為 {x=3,y=1};
③集合{x∈N|x2=1}用列舉法可表示為{1,1};
④集合
是無限集.
其中正確的是 ( )
A.①和③
B.②和④
C.④
D.①③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=
,若函數g(x)=f(x)﹣m存在4個不同的零點x1 , x2 , x3 , x4 , 則實數m的取值范圍是 , x1x2x3x4的取值范圍是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com