【題目】已知F1 , F2分別是雙曲線C:
=1(a>0,b>0)的左、右焦點,其離心率為e,點B的坐標為(0,b),直線F1B與雙曲線C的兩條漸近線分別交于P,Q兩點,線段PQ的垂直平分線與x軸,直線F1B的交點分別為M,R,若△RMF1與△PQF2的面積之比為e,則雙曲線C的離心率為( )
A.![]()
B.![]()
C.2
D.![]()
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的廣告費用支出x萬元與銷售額y萬元之間有如下的對應數(shù)據(jù):
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據(jù)此估計廣告費用為12萬元時,銷售收入y的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱臺ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.![]()
(1)求證:BF⊥平面ACFD;
(2)求直線BD與平面ACFD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,點D是AB的中點. ![]()
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的幾何體中,四邊形ABCD為梯形,AD∥BC,AB⊥平面BEC,EC⊥CB,已知BC=2AD=2AB=2. ![]()
(1)證明:BD⊥平面DEC;
(2)若二面角A﹣ED﹣B的大小為30°,求EC的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體EF﹣ABCD中,ABCD,ABEF均為直角梯形,
,DCEF為平行四邊形,平面DCEF⊥平面ABCD. ![]()
(1)求證:DF⊥平面ABCD;
(2)若△ABD是等邊三角形,且BF與平面DCEF所成角的正切值為
,求二面角A﹣BF﹣C的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在ABC中,角A,B,C所對的邊分別為a,b,c,且a2+b2﹣c2=
ab.
(1)求cos
的值;
(2)若c=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣6x2+9x,g(x)=
x3﹣
x2+ax﹣
(a>1)若對任意的x1∈[0,4],總存在x2∈[0,4],使得f(x1)=g(x2),則實數(shù)a的取值范圍為( )
A.(1,
]
B.[9,+∞)??
C.(1,
]∪[9,+∞)
D.[
,
]∪[9,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市公租房的房源位于A,B,C,D四個片區(qū),設每位申請人只申請其中一個片區(qū)的房源,且申請其中任一個片區(qū)的房源是等可能的,在該市的甲、乙、丙三位申請人中:
(1)求恰有1人申請A片區(qū)房源的概率;
(2)用x表示選擇A片區(qū)的人數(shù),求x的分布列和數(shù)學期望.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com