【題目】高斯是德國著名的數學家,近代數學奠基者之一,享有“數學王子”的稱號,他和阿基米德、牛頓并列為世界三大數學家,用其名字命名的“高斯函數”為:設
,用
表示不超過x的最大整數,則
稱為高斯函數,例如:
,
.已知函數
,則關于函數
的敘述中正確的是( )
A.
是偶函數B.
是奇函數
C.
在R上是增函數D.
的值域是![]()
E.
的值域是![]()
科目:高中數學 來源: 題型:
【題目】“楊輝三角”是我國數學史上的一個偉大成就,是二項式系數在三角形中的一種幾何排列.如圖所示,去除所有為1的項,依此構成數列2,3,3,4,6,4,5,10,10,5,…,則此數列的前46項和為_____.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】大型綜藝節目《最強大腦》中,有一個游戲叫做盲擰魔方,就是玩家先觀察魔方狀態并進行記憶,記住后蒙住眼睛快速還原魔方.根據調查顯示,是否喜歡盲擰魔方與性別有關.為了驗證這個結論,某興趣小組隨機抽取了100名魔方愛好者進行調查,得到的部分數據如表所示:已知在全部100人中隨機抽取1人抽到喜歡盲擰的概率為
.
喜歡盲擰 | 不喜歡盲擰 | 總計 | |
男 | 10 | ||
女 | 20 | ||
總計 | 100 |
表(1)
并邀請這100人中的喜歡盲擰的人參加盲擰三階魔方比賽,其完成時間的頻率分布如表所示:
完成時間(分鐘) | [0,10) | [10,20) | [20,30) | [30,40] |
頻率 | 0.2 | 0.4 | 0.3 | 0.1 |
表(2)
(Ⅰ)將表(1)補充完整,并判斷能否在犯錯誤的概率不超過0.001的前提下認為是否喜歡盲擰與性別有關?
(Ⅱ)現從表(2)中完成時間在[30,40] 內的人中任意抽取2人對他們的盲擰情況進行視頻記錄,記完成時間在[30,40]內的甲、乙、丙3人中恰有一人被抽到為事件A,求事件A發生的概率.
(參考公式:
,其中
)
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知m、n是不重合的直線,α、β是不重合的平面,有下列命題:①若m
α,n∥α,則m∥n;②若m∥α,m∥β,則α∥β;③若α∩β=n,m∥n,則m∥α且m∥β;④若m⊥α,m⊥β,則α∥β.其中真命題的個數是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某次詩詞大會決賽前,甲、乙、丙丁四位選手有機會問鼎冠軍,
三名詩詞愛好者依據選手在之前比賽中的表現,結合自己的判斷,對本場比賽的冠軍進行了如下猜測:
猜測冠軍是乙或丁;
猜測冠軍一定不是丙和丁;
猜測冠軍是甲或乙。比賽結束后發現,
三個人中只有一個人的猜測是正確的,則冠軍是( )
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系
中,以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,已知直線
的參數方程為
(
為參數),曲線
的極坐標方程為
.
(1)求曲線
的直角坐標方程,并指出該曲線是什么曲線;
(2)若直線
與曲線
的交點分別為
,求
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com