【題目】某公司新上一條生產線,為保證新的生產線正常工作,需對該生產線進行檢測,現從該生產線上隨機抽取100件產品,測量產品數據,用統計方法得到樣本的平均數
,標準差
,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估值。
![]()
(1)從該生產線加工的產品中任意抽取一件,記其數據為
,依據以下不等式評判(
表示對應事件的概率)
①![]()
②![]()
③![]()
評判規則為:若至少滿足以上兩個不等式,則生產狀況為優,無需檢修;否則需檢修生產線,試判斷該生產線是否需要檢修;
(2)將數據不在
內的產品視為次品,從該生產線加工的產品中任意抽取2件,次品數記為
,求
的分布列與數學期望
。
科目:高中數學 來源: 題型:
【題目】幾個孩子在一棵枯樹上玩耍,他們均不慎失足下落.已知
(
)甲在下落的過程中依次撞擊到樹枝
,
,
;
(
)乙在下落的過程中依次撞擊到樹枝
,
,
;
(
)丙在下落的過程中依次撞擊到樹枝
,
,
;
(
)丁在下落的過程中依次撞擊到樹枝
,
,
;
(
)戊在下落的過程中依次撞擊到樹枝
,
,
.
倒霉和李華在下落的過程中撞到了從
到
的所有樹枝,根據以上信息,在李華下落的過程中,和這
根樹枝不同的撞擊次序有( )種.
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率低于
,現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生0到9之間取整數值的隨機數,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數為一組,代表三次投籃的結果,經隨機模擬產生了如下20組隨機數:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據此估計,該運動員三次投籃恰有兩次命中的概率為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數f(x)=sin(2x+φ)+
cos(2x+φ)(0<φ<π)圖象向左平移
個單位后,得到函數的圖象關于點(
,0)對稱,則函數g(x)=cos(x+φ)在[﹣
,
]上的最小值是( )
A.﹣ ![]()
B.﹣ ![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠對一批新產品的長度(單位:
)進行檢測,如下圖是檢測結果的頻率分布直方圖,據此估計這批產品的中位數與平均數分別為( )
![]()
A.20,22.5B.22.5,25C.22.5,22.75D.22.75,22.75
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,雙曲線
=1(a>0,b>0)的右支與焦點為F的拋物線x2=2py(p>0)交于A,B兩點,若|AF|+|BF|=4|OF|,則該雙曲線的漸近線方程為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設{an}和{bn}是兩個等差數列,記cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs這s個數中最大的數.(13分)
(1)若an=n,bn=2n﹣1,求c1 , c2 , c3的值,并證明{cn}是等差數列;
(2)證明:或者對任意正數M,存在正整數m,當n≥m時,
>M;或者存在正整數m,使得cm , cm+1 , cm+2 , …是等差數列.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com