【題目】在圓
上任取一點(diǎn)
,點(diǎn)
在
軸的正射影為點(diǎn)
,當(dāng)點(diǎn)
在圓上運(yùn)動(dòng)時(shí),動(dòng)點(diǎn)
滿足
,動(dòng)點(diǎn)
形成的軌跡為曲線
.
(Ⅰ)求曲線
的方程;
(Ⅱ)點(diǎn)
在曲線
上,過點(diǎn)
的直線
交曲線
于
兩點(diǎn),設(shè)直線
斜率為
,直線
斜率為
,求證:
為定值.
【答案】解:(Ⅰ)設(shè)點(diǎn)
坐標(biāo)為
, 點(diǎn)
的坐標(biāo)為
,則
, ![]()
因?yàn)辄c(diǎn)
在圓
,所以
①
把
,
代入方程①,得
,
所以曲線
的方程為
.
(Ⅱ)方法一:由題意知直線
斜率不為0,設(shè)直線
方程為
, ![]()
由
消去
,得
,
易知
,得 ![]()
![]()
.所以
為定值
方法二:(ⅰ)當(dāng)直線
斜率不存在時(shí), ![]()
所以 ![]()
(ⅱ)當(dāng)直線
斜率存在時(shí),設(shè)直線
方程為
, ![]()
由
消去
,得
,
易知
, ![]()
![]()
.所以
為定值
【解析】(I)用代入法求點(diǎn)的軌跡方程,設(shè)點(diǎn) M 坐標(biāo)為 ( x , y ) , 點(diǎn) P 的坐標(biāo)為 (
,
),找到x,y與
的關(guān)系即可。
(II)此題結(jié)合直線與橢圓的位置關(guān)系,考察定值問題;因此設(shè)出直線的方程,聯(lián)立,利用韋達(dá)定理得到點(diǎn)B、D的坐標(biāo)的關(guān)系,再利用直線的斜率的坐標(biāo)公式表示出
即可。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解斜率的計(jì)算公式的相關(guān)知識(shí),掌握給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1≠x2,用兩點(diǎn)的坐標(biāo)來表示直線P1P2的斜率:斜率公式: k=y2-y1/x2-x1,以及對(duì)橢圓的標(biāo)準(zhǔn)方程的理解,了解橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:
,焦點(diǎn)在y軸:
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在棱長為4的正方體ABCD﹣A1B1C1D1中,點(diǎn)E是棱CC1的中點(diǎn),則異面直線D1E與AC所成角的余弦值是 . ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
(a>0,且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2﹣x恰好有兩個(gè)不相等的實(shí)數(shù)解,則a的取值范圍是( )
A.(0,
]
B.[
,
]
C.[
,
]∪{
}
D.[
,
)∪{
}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場對(duì)同一種商品開展促銷活動(dòng),對(duì)購買該商品的顧客兩家商場的獎(jiǎng)勵(lì)方案如下:
甲商場:顧客轉(zhuǎn)動(dòng)如圖所示圓盤,當(dāng)指針指向陰影部分(圖中四個(gè)陰影部分均為扇形,且每個(gè)扇形圓心角均為
,邊界忽略不計(jì))即為中獎(jiǎng).
乙商場:從裝有3個(gè)白球3個(gè)紅球的盒子中一次性摸出2個(gè)球(球除顏色外不加區(qū)分),如果摸到的是2個(gè)紅球,即為中獎(jiǎng).問:購買該商品的顧客在哪家商場中獎(jiǎng)的可能性大?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
,焦點(diǎn)到準(zhǔn)線的距離為4,過點(diǎn)
的直線交拋物線于
兩點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)如果點(diǎn)
恰是線段
的中點(diǎn),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義方程
的實(shí)數(shù)根
叫做函數(shù)
的“新駐點(diǎn)”,若函數(shù)
,
,
的“新駐點(diǎn)”分別為
,則
的大小關(guān)系為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程
為:
橢圓的右焦點(diǎn)為
,離心率為
,直線
與橢圓
相交于
兩點(diǎn),且 ![]()
(1)橢圓的方程
(2)求
的面積;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求證:
函數(shù)是偶函數(shù);
(2)若對(duì)任意的
,都有
,求實(shí)數(shù)
的取值范圍;
(3)若函數(shù)
有且僅有
個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com