【題目】橢圓與雙曲線有相同的焦點(diǎn)
,
,橢圓的一個(gè)短軸端點(diǎn)為
,直線
與雙曲線的一條漸近線平行,若橢圓于雙曲線的離心率分別為
,
,則
的最小值為__________.
【答案】
【解析】由題意可知,雙曲線的焦點(diǎn)在
軸上,設(shè)橢圓的長(zhǎng)軸為
,短軸為
,雙曲線的實(shí)軸為
,虛軸為
,
橢圓的一個(gè)短軸端點(diǎn)為
,直線
與雙曲線的一條漸近線平行,
,即
,平方可得,
,由此得到
,即
,
,由
,
都是正數(shù),
,當(dāng)且僅當(dāng)
,即
時(shí),等號(hào)成立,
的最小值
,故答案為
.
【易錯(cuò)點(diǎn)晴】本題主要考查橢圓與雙曲線的幾何性質(zhì)以及利用基本不等式求最值,屬于難題.利用基本不等式求最值時(shí),一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最小);三相等是,最后一定要驗(yàn)證等號(hào)能否成立(主要注意兩點(diǎn),一是相等時(shí)參數(shù)否在定義域內(nèi),二是多次用
或
時(shí)等號(hào)能否同時(shí)成立).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x),當(dāng)x,y∈R時(shí),恒有f(x+y)=f(x)+f(y).當(dāng)x>0時(shí),f(x)>0
(1)求證:f(x)是奇函數(shù);
(2)若f(1)=
,試求f(x)在區(qū)間[﹣2,6]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
的前
項(xiàng)和為
,
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)
,
=
,記數(shù)列
的前
項(xiàng)和
.若對(duì)
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù),
).以原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,與直角坐標(biāo)系
取相同的長(zhǎng)度單位,建立極坐標(biāo)系.設(shè)曲線
的極坐標(biāo)方程為
.
(Ⅰ)設(shè)
為曲線
上任意一點(diǎn),求
的取值范圍;
(Ⅱ)若直線
與曲線
交于兩點(diǎn)
,
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一顆骰子投擲兩次分別得到點(diǎn)數(shù)a,b,則直線ax-by=0與圓(x-2)2+y2=2相交的概率為____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(
)x﹣log2x,0<a<b<c,f(a)f(b)f(c)<0,實(shí)數(shù)d是函數(shù)f(x)的一個(gè)零點(diǎn).給出下列四個(gè)判斷:
①d>a;②d>b;③d<c;④d>c.其中可能成立的是(填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在函數(shù)
(
)的所有切線中,有且僅有一條切線
與直線
垂直.
(1)求
的值和切線
的方程;
(2)設(shè)曲線
在任一點(diǎn)處的切線傾斜角為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,有兩個(gè)獨(dú)立的轉(zhuǎn)盤(
)、(
).兩個(gè)圖中三個(gè)扇形區(qū)域的圓心角分別為
、
、
.用這兩個(gè)轉(zhuǎn)盤進(jìn)行玩游戲,規(guī)則是:依次隨機(jī)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤再隨機(jī)停下(指針固定不會(huì)動(dòng),當(dāng)指針恰好落在分界線時(shí),則這次結(jié)果無效,重新開始),記轉(zhuǎn)盤(
)指針?biāo)鶎?duì)的數(shù)為
,轉(zhuǎn)盤(
)指針?biāo)鶎?duì)的數(shù)為
,(
、
),求下列概率:
![]()
(1)
;
(2)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+b)(其中a,b為常數(shù),且a>0,a≠1)的圖象經(jīng)過點(diǎn)A(﹣2,0),B(1,2).
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=(
)2x﹣(
)x﹣1,x∈[0,+∞),求g(x)的值域.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com