【題目】如圖,A、B、C、D為平面四邊形ABCD的四個內角.![]()
(1)證明:tan
;
(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan
+tan
+tan
+tan
的值.
【答案】
(1)證明: tan
=
=
=
.等式成立.
(2)解:由A+C=180°,得C=180°﹣A,D=180°﹣B,由(Ⅰ)可知:tan
+tan
+tan
+tan
=
=
,連結BD,在△ABD中,有BD2=AB2+AD2﹣2ABADcosA,AB=6,BC=3,CD=4,AD=5,
在△BCD中,有BD2=BC2+CD2﹣2BCCDcosC,
所以AB2+AD2﹣2ABADcosA=BC2+CD2﹣2BCCDcosC,
則:cosA=
=
=
.
于是sinA=
=
,
連結AC,同理可得:cosB=
=
=
,
于是sinB=
=
.
所以tan
+tan
+tan
+tan
=
=
=
.
![]()
【解析】(1)直接利用切化弦以及二倍角公式化簡證明即可.(2)通過A+C=180°,得C=180°﹣A,D=180°﹣B,利用(1)化簡tan
+tan
+tan
+tan
=
,連結BD,在△ABD中,利用余弦定理求出sinA,連結AC,求出sinB,然后求解即可.
科目:高中數學 來源: 題型:
【題目】已知點A(x1,y1),B(x2,y2),M(1,0),
=(3λ,4λ)(λ≠0),
=-4
,若拋物線y2=ax經過A和B兩點,則a的值為( )
A. 2 B. -2
C. -4 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f (x)=(x+1)lnx﹣a (x﹣1)在x=e處的切線與y軸相交于點(0,2﹣e).
(1)求a的值;
(2)函數f (x)能否在x=1處取得極值?若能取得,求此極值;若不能,請說明理由.
(3)當1<x<2時,試比較
與
大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知點P(3,0)在圓C:(x﹣m)2+(y﹣2)2=40內,動直線AB過點P且交圓C于A、B兩點,若△ABC的面積的最大值為20,則實數m的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=|x﹣1|﹣2|x+1|的最大值為m.
(1)求m;
(2)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量
=(1,-3,2),
=(-2,1,1),點A(-3,-1,4),B(-2,-2,2).
(1)求|2
+
|;
(2)在直線AB上,是否存在一點E,使得
⊥
?(O為原點)
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com