【題目】分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段
的長度為a,在線段
上取兩個點(diǎn)
,
,使得
,以
為一邊在線段
的上方做一個正六邊形,然后去掉線段
,得到圖2中的圖形;對圖2中的最上方的線段
作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:
![]()
記第
個圖形(圖1為第1個圖形)中的所有線段長的和為
,現(xiàn)給出有關(guān)數(shù)列
的四個命題:
①數(shù)列
是等比數(shù)列;
②數(shù)列
是遞增數(shù)列;
③存在最小的正數(shù)
,使得對任意的正整數(shù)
,都有
;
④存在最大的正數(shù)
,使得對任意的正整數(shù)
,都有
.
其中真命題的序號是________________(請寫出所有真命題的序號).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線
與雙曲線
相交于
、
兩點(diǎn),
為坐標(biāo)原點(diǎn),且
.
(1)求
與
滿足的關(guān)系;
(2)求證:點(diǎn)
到直線
的距離是定值,并求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)
(單位:萬元)對年銷售量
(單位:噸)和年利潤
(單位:萬元)的影響.對近六年的年宣傳費(fèi)
和年銷售量
(
)的數(shù)據(jù)作了初步統(tǒng)計(jì),得到如下數(shù)據(jù):
年份 |
|
|
|
|
|
|
年宣傳費(fèi) |
|
|
|
|
|
|
年銷售量 |
|
|
|
|
|
|
經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)
(萬元)與年銷售量
(噸)之間近似滿足關(guān)系式
(
).對上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如表:
|
|
|
|
|
|
|
|
(1)根據(jù)所給數(shù)據(jù),求
關(guān)于
的回歸方程;
(2)已知這種產(chǎn)品的年利潤
與
,
的關(guān)系為
若想在
年達(dá)到年利潤最大,請預(yù)測
年的宣傳費(fèi)用是多少萬元?
附:對于一組數(shù)據(jù)
,
,…,
,其回歸直線
中的斜率和截距的最小二乘估計(jì)分別為
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
為
的內(nèi)心,三邊長
,點(diǎn)
在邊
上,且
,若直線
交直線
于點(diǎn)
,則線段
的長為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐
的底面
為直角梯形,
,
,
,
為正三角形.
![]()
(1)點(diǎn)
為棱
上一點(diǎn),若
平面
,
,求實(shí)數(shù)
的值;
(2)求點(diǎn)B到平面SAD的距離.
【答案】(1)
;(2)![]()
【解析】試題分析:(1)由
平面
,可證
,進(jìn)而證得四邊形
為平行四邊形,根據(jù)
,可得
;
(2)利用等體積法
可求點(diǎn)
到平面
的距離.
試題解析:((1)因?yàn)?/span>
平面SDM,
![]()
平面ABCD,
平面SDM
平面ABCD=DM,
所以
,
因?yàn)?/span>
,所以四邊形BCDM為平行四邊形,又
,所以M為AB的中點(diǎn).
因?yàn)?/span>
,
.
![]()
(2)因?yàn)?/span>
,
,
所以
平面
,
又因?yàn)?/span>
平面
,
所以平面
平面
,
平面
平面
,
在平面
內(nèi)過點(diǎn)
作
直線
于點(diǎn)
,則
平面
,
在
和
中,
因?yàn)?/span>
,所以
,
又由題知
,
所以
,
由已知求得
,所以
,
連接BD,則
,
又求得
的面積為
,
所以由
點(diǎn)B 到平面
的距離為
.
【題型】解答題
【結(jié)束】
19
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.
(1)請分別求出甲、乙兩種薪酬方案中日薪
(單位:元)與送貨單數(shù)
的函數(shù)關(guān)系式;
(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標(biāo)滿足如圖所示的直方圖,其中當(dāng)某天的派送量指標(biāo)在
時(shí),日平均派送量為
單.
若將頻率視為概率,回答下列問題:
![]()
①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為
(單位:元),試分別求出甲、乙兩種方案的日薪
的分布列,數(shù)學(xué)期望及方差;
②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.
(參考數(shù)據(jù):
,
,
,
,
,
,
,
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,底面為矩形的四棱錐
,
底面
,
,
,
是
的中點(diǎn).
![]()
(1)求四棱錐
的體積;
(2)求
與面
所成角;
(3)在
邊上是否存在一點(diǎn)
,使得
到平面
的距離為
?若存在,求出;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一舉行了一次數(shù)學(xué)競賽,為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為
)作為樣本(樣本容量為
)進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,已知得分在[50,60),[90,100]的頻數(shù)分別為8,2.
![]()
(1)求樣本容量
和頻率分布直方圖中的
的值;
(2)估計(jì)本次競賽學(xué)生成績的中位數(shù);
(3)在選取的樣本中,從競賽成績在
分以上(含
分)的學(xué)生中隨機(jī)抽取
名學(xué)生,求所抽取的
名學(xué)生中至少有一人得分在
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
是關(guān)于
的方程
的兩個不相等的實(shí)數(shù)根,那么過兩點(diǎn)
的直線與圓
的位置關(guān)系是( )
A.相離B.相切C.相交D.隨的變化而變化
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等軸雙曲線
的兩個焦點(diǎn)
、
在直線
上,線段
的中點(diǎn)是坐標(biāo)原點(diǎn),且雙曲線經(jīng)過點(diǎn)
.
(1)若已知下列所給的三個方程中有一個是等軸雙曲線
的方程:①
;②
;③
.請推理判斷哪個是等軸雙曲線
的方程,并求出此雙曲線的實(shí)軸長;
(2)現(xiàn)要在等軸雙曲線
上選一處
建一座碼頭,向
、
兩地轉(zhuǎn)運(yùn)貨物.經(jīng)測算,從
到
、從
到
修建公路的費(fèi)用都是每單位長度
萬元,則碼頭應(yīng)建在何處,才能使修建兩條公路的總費(fèi)用最低?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com