【題目】在底面為正三角形的直三棱柱
中,已知AB=AA1,點M為
的中點.
![]()
(1)求證:![]()
(2)點P為
的中點,求二面角P-AB-M的余弦值.
科目:高中數學 來源: 題型:
【題目】某校高三(1)班在一次語文測試結束后,發現同學們在背誦內容方面失分較為嚴重.為了提升背誦效果,班主任倡議大家在早、晚讀時間站起來大聲誦讀,為了解同學們對站起來大聲誦讀的態度,對全班50名同學進行調查,將調查結果進行整理后制成下表:
考試分數 |
|
|
|
|
|
|
頻數 | 5 | 10 | 15 | 5 | 10 | 5 |
贊成人數 | 4 | 6 | 9 | 3 | 6 | 4 |
(1)欲使測試優秀率為30%,則優秀分數線應定為多少分?
(2)依據第1問的結果及樣本數據研究是否贊成站起來大聲誦讀的態度與考試成績是否優秀的關系,列出2×2列聯表,并判斷是否有90%的把握認為贊成與否的態度與成績是否優秀有關系.
參考公式及數據:
,
.
| 0.100 | 0.050 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圓錐
(其中
為頂點,
為底面圓心)的側面積與底面積的比是
,則圓錐
與它外接球(即頂點在球面上且底面圓周也在球面上)的體積比為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
的內接等邊三角形
的面積為
(其中
為坐標原點).
(1)試求拋物線
的方程;
(2)已知點
兩點在拋物線
上,
是以點
為直角頂點的直角三角形.
①求證:直線
恒過定點;
②過點
作直線
的垂線交
于點
,試求點
的軌跡方程,并說明其軌跡是何種曲線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數
(其中
)的圖象如圖所示,為了得到
的圖象,則只要將
的圖象上所有的點( )
A.向左平移
個單位長度,縱坐標縮短到原來的
,橫坐標不變
B.向左平移
個單位長度,縱坐標伸長到原來的3倍橫坐標不變
C.向右平移
個單位長度,縱坐標縮短到原來的
,橫坐標不變
D.向右平移
個單位長度,縱坐標伸長到原來的3倍,橫坐標不變
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代有著輝煌的數學研究成果,《周牌算經》、《九章算術》、《海島算經》、《孫子算經》、《緝古算經》等10部專著是了解我國古代數學的重要文獻.這10部專著中有5部產生于魏晉南北朝時期.某中學擬從這10部專著中選擇2部作為“數學文化”課外閱讀教材則所選2部專著中至少有一部是魏晉南北朝時期的專著的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠加工的零件按箱出廠,每箱有10個零件,在出廠之前需要對每箱的零件作檢驗,人工檢驗方法如下:先從每箱的零件中隨機抽取4個零件,若抽取的零件都是正品或都是次品,則停止檢驗;若抽取的零件至少有1個至多有3個次品,則對剩下的6個零件逐一檢驗.已知每個零件檢驗合格的概率為0.8,每個零件是否檢驗合格相互獨立,且每個零件的人工檢驗費為2元.
(1)設1箱零件人工檢驗總費用為
元,求
的分布列;
(2)除了人工檢驗方法外還有機器檢驗方法,機器檢驗需要對每箱的每個零件作檢驗,每個零件的檢驗費為1.6元.現有1000箱零件需要檢驗,以檢驗總費用的數學期望為依據,在人工檢驗與機器檢驗中,應該選擇哪一個?說明你的理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在極坐標系中,曲線C1是以C1(4,0)為圓心的半圓,曲線C2是以
為圓心的圓,曲線C1、C2都過極點O.
![]()
(1)分別寫出半圓C1,C2的極坐標方程;
(2)直線l:
與曲線C1,C2分別交于M、N兩點(異于極點O),P為C2上的動點,求△PMN面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
過橢圓
的焦點,且橢圓
的中心
關于直線
的對稱點的橫坐標為
(
為橢圓
的焦距).
![]()
(1)求橢圓
的方程;
(2)是否存在過點
,且交橢圓
于點
的直線
,滿足
.若存在,求直線
的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com