【題目】已知某運動員每次投籃命中的概率為40%.現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數值的隨機數,指定1,2,3,4表示命中,5,6,7,8,9,0表示沒有命中;再以每三個隨機數為一組,代表三次投籃的結果.經隨機模擬產生了20組隨機數:
907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989
據此估計,該運動員三次投籃恰有兩次命中的概率為( )
A. 0.35 B. 0.25
C. 0,20 D. 0.15
科目:高中數學 來源: 題型:
【題目】已知函數
是偶函數.
(1)求
的值;
(2)若函數
的圖象與直線
沒有交點,求b的取值范圍;
(3)設
,若函數
與
的圖象有且只有一個公共點,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=
(t+1)lnx,,其中t∈R.
(1)若t=1,求證:當x>1時,f(x)>0成立;
(2)若t>
,判斷函數g(x)=x[f(x)+t+1]的零點的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據市場分析,南雄市精細化工園某公司生產一種化工產品,當月產量在10噸至25噸時,月生產總成本y(萬元)可以看成月產量x(噸)的二次函數;當月產量為10噸時,月總成本為20萬元;當月產量為15噸時,月總成本最低為17.5萬元,為二次函數的頂點.寫出月總成本y(萬元)關于月產量x(噸)的函數關系.已知該產品銷售價為每噸1.6萬元,那么月產量為多少時,可獲最大利潤?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)某公司為了解廣告投入對銷售收益的影響,在若干地區各投入
萬元廣告費用,并將各地的銷售收益(單位:萬元)繪制成如圖所示的頻率分布直方圖.由于工作人員操作失誤,橫軸的數據丟失,但可以確定橫軸是從
開始計數的.
![]()
![]()
(Ⅰ)根據頻率分布直方圖計算圖中各小長方形的寬度;
(Ⅱ)該公司按照類似的研究方法,測得另外一些數據,并整理得到上表:表中的數據顯示
與
之間存在線性相關關系,求
關于
的回歸方程;
(Ⅲ)若廣告投入
萬元時,實際銷售收益為
.
萬元,求殘差
.
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有甲、乙兩種商品,經營銷售這兩種商品所得的利潤依次為M萬元和N萬元,它們與投入資金
萬元的關系可由經驗公式給出:M=
,N=
(
≥1).今有8萬元資金投入經營甲、乙兩種商品,且乙商品至少要求投資1萬元,
設投入乙種商品的資金為
萬元,總利潤
;
(2)為獲得最大利潤,對甲、乙兩種商品的資金投入分別是多少?共能獲得多大利潤?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2016·哈爾濱高二檢測)如圖,下列四個幾何體中,它們的三視圖(正視圖、俯視圖、側視圖)有且僅有兩個相同,而另一個不同的兩個幾何體是________.
![]()
(1)棱長為2的正方體 (2)底面直徑和高均為2的圓柱
![]()
(3)底面直徑和高
均為2的圓錐
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com