【題目】已知
為等差數(shù)列,公差
(
),且
(
)
(1)求證:當(dāng)
取不同自然數(shù)時,此方程有公共根;
(2)若方程不同的根依次為
,
,
, …,
, …,求證:數(shù)列
為等差數(shù)列。
【答案】
(1)因?yàn)?是等差數(shù)列, ,
故方程 可變?yōu)?,
當(dāng) 取不同自然數(shù)時,方程有一個公共根 。
(2)方程的非公共根為 ,
是等差數(shù)列。
【解析】分析:(1)根據(jù)等差數(shù)列的性質(zhì)可得
,故方程
可變?yōu)?
即可;(2)本題是考查等差關(guān)系的確定,考查了學(xué)生的推理運(yùn)算能力,屬于難題。
【考點(diǎn)精析】通過靈活運(yùn)用等差數(shù)列的性質(zhì),掌握在等差數(shù)列{an}中,從第2項(xiàng)起,每一項(xiàng)是它相鄰二項(xiàng)的等差中項(xiàng);相隔等距離的項(xiàng)組成的數(shù)列是等差數(shù)列即可以解答此題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
(a>b>0)的一個頂點(diǎn)為A(2,0),離心率為
.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的方程;
(2)當(dāng)△AMN的面積為
時,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人上午7時乘船出發(fā),以勻速
海里/小時
從
港前往相距50海里的
港,然后乘汽車以勻速
千米/小時(
)自
港前往相距
千米的
市,計(jì)劃當(dāng)天下午4到9時到達(dá)
市.設(shè)乘船和汽車的所要的時間分別為
、
小時,如果所需要的經(jīng)費(fèi)
(單位:元)
![]()
(1)試用含有
、
的代數(shù)式表示
;
(2)要使得所需經(jīng)費(fèi)
最少,求
和
的值,并求出此時的費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn , 若a7>0,a8<0,則下列結(jié)論正確的是( )
A.S7<S8
B.S15<S16
C.S13>0
D.S15>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知Sn表示數(shù)列{an}的前n項(xiàng)和,若對任意的n∈N*滿足an+1=an+a2 , 且a3=2,則S2016=( )
A.1006×2013
B.1006×2014
C.1008×2015
D.1007×2015
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示將若干個點(diǎn)擺成三角形圖案,每條邊(包括兩個端點(diǎn))有n(n>l,n∈N*)個點(diǎn),相應(yīng)的圖案中總的點(diǎn)數(shù)記為
,則
…
=( ). ![]()
A.![]()
B.![]()
C.![]()
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)F(x)=|lgx|,若0<a<b,且f(a)=f(b),則a+2b的取值范圍是( )
A.![]()
B.
C.(3,+∞)
D.[3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
=lnx+ax2+(2a+1)x.
(1)討論
的單調(diào)性;
(2)當(dāng)a﹤0時,證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若y=|3sin(ωx+
)+2|的圖象向右平移
個單位后與自身重合,且y=tanωx的一個對稱中心為(
,0),則ω的最小正值為 .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com