【題目】已知函數(shù)
.
(Ⅰ)解不等式
;
(Ⅱ)若不等式
的解集為
,且滿足
,求實(shí)數(shù)
的取值范圍.
【答案】解:(Ⅰ)
可化為
,
即
,或
,或
,
解得
,或
,或
;
不等式的解集為
.
(Ⅱ)易知
;
所以
,又
在
恒成立;
在
恒成立;
在
恒成立;
![]()
【解析】(1)根據(jù)題意結(jié)合已知條件分段討論解出x的取值范圍即可。(2)首先計(jì)算出B=(0,3)根據(jù)題意結(jié)合子集的定義即可求出a 的取值范圍。
【考點(diǎn)精析】認(rèn)真審題,首先需要了解解一元二次不等式(求一元二次不等式![]()
解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫:畫出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC是邊長(zhǎng)為4的正三角形,點(diǎn)P1 , P2 , P3 , 四等分線段BC(如圖所示) ![]()
(1)P為邊BC上一動(dòng)點(diǎn),求
的取值范圍?
(2)Q為線段AP1上一點(diǎn),若
=m
+
,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐
中,底面
為正方形,
平面
,且
,點(diǎn)
在線段
上,且
.![]()
(Ⅰ)證明:平面
平面
;
(Ⅱ)求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下四個(gè)命題,其中所有真命題的序號(hào)為 .
①函數(shù)
在區(qū)間
上存在一個(gè)零點(diǎn),則
的取值范圍是
;
②“
”是“
成等比數(shù)列”的必要不充分條件;
③
,
;
④若
,則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的多面體中,
平面
,
,
,
,
,
,
,
是
的中點(diǎn).![]()
(Ⅰ)求證:
;
(Ⅱ)求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠為檢驗(yàn)車間一生產(chǎn)線是否工作正常,現(xiàn)從生產(chǎn)線中隨機(jī)抽取一批零件樣本,測(cè)量尺寸(單位:
)繪成頻率分布直方圖如圖所示:![]()
(Ⅰ)求該批零件樣本尺寸的平均數(shù)
和樣本方差
(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅱ)若該批零件尺寸
服從正態(tài)分布
,其中
近似為樣本平均數(shù)
,
近似為樣本方差
,利用該正態(tài)分布求
;
(Ⅲ)若從生產(chǎn)線中任取一零件,測(cè)量尺寸為
,根據(jù)
原則判斷該生產(chǎn)線是否正常?
附:
;若
,則
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市某小學(xué)三年級(jí)有甲、乙兩個(gè)班,其中甲班有男生30人,女生20人,乙班有男生25人,女生25人,現(xiàn)在需要各班按男、女生分層抽取
的學(xué)生進(jìn)行某項(xiàng)調(diào)查,則兩個(gè)班共抽取男生人數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)當(dāng)
時(shí),求函數(shù)
的圖象在
處的切線方程;
(2)若函數(shù)
在定義域上為單調(diào)增函數(shù).
①求
最大整數(shù)值;
②證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
為坐標(biāo)原點(diǎn),
,
是橢圓
上的點(diǎn),且
,設(shè)動(dòng)點(diǎn)
滿足
.
(Ⅰ)求動(dòng)點(diǎn)
的軌跡
的方程;
(Ⅱ)若直線
與曲線
交于
兩點(diǎn),求三角形
面積的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com