【題目】數(shù)列
中的項(xiàng)按順序可以排列成如圖的形式,第一行
項(xiàng),排
;第二行
項(xiàng),從左到右分別排
,
;第三行
項(xiàng),……以此類推,設(shè)數(shù)列
的前
項(xiàng)和為
,則滿足
的最小正整數(shù)
的值為( )
4,
4,4
3
4,4
3,4
4,4
3,4
, 4
![]()
…
A.
B. ![]()
C.
D. ![]()
【答案】C
【解析】
首先根據(jù)題中所給的圖中的數(shù)據(jù),可以斷定每行都是以4為首項(xiàng),以3為公比的等比數(shù)列,利用求和公式求得每一行的各項(xiàng)的和,之后對各行求和,利用等比數(shù)列求和公式得到相應(yīng)的不等式,求得結(jié)果.
由圖可知,第n行是4為首項(xiàng),以3為公比的等比數(shù)列的前n項(xiàng),
和為
,
設(shè)滿足
的最小正整數(shù)為
,
項(xiàng)
在圖中排在第
行第
列(
且
),
所以有![]()
![]()
![]()
,則
,
,
即圖中從第
行第
列開始,和大于
.
因?yàn)榍?/span>
行共有
項(xiàng),
所以最小正整數(shù)
的值為
,
故選C.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
,
為坐標(biāo)原點(diǎn),
為橢圓
的左焦點(diǎn),離心率為
,直線
與橢圓相交于
,
兩點(diǎn).
(1)求橢圓
的方程;
(2)若
是弦
的中點(diǎn),
是橢圓
上一點(diǎn),求
的面積最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體
的棱長為
,作平面
與底面不平行
與棱
,
,
,
分別交于E,F,G,H,記EA,FB,GC,HD分別為
,
,
,
,若
,
,則多面體EFGHABCD的體積為
![]()
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程及曲線
的直角坐標(biāo)方程,并指出兩曲線的軌跡圖形;
(2)曲線
與兩坐標(biāo)軸的交點(diǎn)分別為
、
,點(diǎn)
在曲線
上運(yùn)動,當(dāng)曲線
與曲線
相切時,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列
中的項(xiàng)按順序可以排列成如圖的形式,第一行
項(xiàng),排
;第二行
項(xiàng),從左到右分別排
,
;第三行
項(xiàng),……以此類推,設(shè)數(shù)列
的前
項(xiàng)和為
,則滿足
的最小正整數(shù)
的值為( )
4,
4,4
3
4,4
3,4
4,4
3,4
, 4
![]()
…
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為2的正方體
中,
,
,
,
分別是棱
,
,
,
的中點(diǎn),點(diǎn)
,
分別在棱
,
上移動,且
.
![]()
(1)當(dāng)
時,證明:直線
平面
;
(2)是否存在
,使面
與面
所成的二面角為直二面角?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某公園內(nèi)有兩條道路
,
,現(xiàn)計(jì)劃在
上選擇一點(diǎn)
,新建道路
,并把
所在的區(qū)域改造成綠化區(qū)域.已知
,
.
(1)若綠化區(qū)域
的面積為1
,求道路
的長度;
(2)若綠化區(qū)域
改造成本為10萬元/
,新建道路
成本為10萬元/
.設(shè)
(
),當(dāng)
為何值時,該計(jì)劃所需總費(fèi)用最小?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
為坐標(biāo)原點(diǎn),橢圓
:
的左、右焦點(diǎn)分別為
,
.過焦點(diǎn)且垂直于
軸的直線與橢圓
相交所得的弦長為3,直線
與橢圓
相切.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)是否存在直線
:
與橢圓
相交于
兩點(diǎn),使得
?若存在,求
的取值范圍;若不存在,請說明理由!
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com