已知函數(shù)![]()
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間和最小值;
(Ⅱ)若函數(shù)
在
上是最小值為
,求
的值;
(Ⅲ)當(dāng)
(其中
="2.718" 28…是自然對數(shù)的底數(shù)).
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)設(shè)![]()
(1)請寫出
的表達式(不需證明);
(2)求
的極值
(3)設(shè)
的最大值為
,
的最小值為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
.
(1)當(dāng)
時,求
的極值;
(2)當(dāng)
時,試比較
與
的大小;
(3)求證:
(
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)
為了保護環(huán)境,某工廠在政府部門的支持下,進行技術(shù)改進: 把二氧化碳轉(zhuǎn)化為某種化工產(chǎn)品,經(jīng)測算,該處理成本
(萬元)與處理量
(噸)之間的函數(shù)關(guān)系可近似地表示為:
, 且每處理一噸二氧化碳可得價值為
萬元的某種化工產(chǎn)品.
(Ⅰ)當(dāng)
時,判斷該技術(shù)改進能否獲利?如果能獲利,求出最大利潤;如果不能獲利,則國家至少需要補貼多少萬元,該工廠才不虧損?
(Ⅱ) 當(dāng)處理量為多少噸時,每噸的平均處理成本最少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=
x2+lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:當(dāng)x>1時,
x2+lnx<
x3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
.
(Ⅰ)如果函數(shù)
在
上是單調(diào)函數(shù),求
的取值范圍;
(Ⅱ)是否存在正實數(shù)
,使得函數(shù)
在區(qū)間
內(nèi)有兩個不同的零點?若存在,請求出
的取值范圍;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
定義在(0,+∞)上的函數(shù)
,
,且
在
處取極值。
(Ⅰ)確定函數(shù)
的單調(diào)性。
(Ⅱ)證明:當(dāng)
時,恒有
成立.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com