【題目】己知在平面直角坐標系
中,圓
的參數方程為
(
為參數)以
軸為極軸,
為極點建立極坐標系,在該極坐標系下,圓
是以點
為圓心,且過點
的圓心.
(1)求圓
及圓
在平而直角坐標系
下的直角坐標方程;
(2)求圓
上任一點
與圓
上任一點之間距離的最小值.
科目:高中數學 來源: 題型:
【題目】某大學為調研學生在
,
兩家餐廳用餐的滿意度,從在
,
兩家餐廳都用過餐的學生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.
整理評分數據,將分數以10為組距分成6組:
,
,
,
,
,
,得到
餐廳分數的頻率分布直方圖,和
餐廳分數的頻數分布表:
![]()
定義學生對餐廳評價的“滿意度指數”如下:
分數 |
|
|
|
滿意度指數 |
|
|
|
(Ⅰ)在抽樣的100人中,求對
餐廳評價“滿意度指數”為0的人數;
(Ⅱ)從該校在,
兩家餐廳都用過餐的學生中隨機抽取1人進行調查,試估計其對
餐廳評價的“滿意度指數”比對
餐廳評價的“滿意度指數”高的概率;
(Ⅲ)如果從
,
兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產電飯煲,每年需投入固定成本40萬元,每生產1萬件還需另投入16萬元的變動成本,設該公司一年內共生產電飯煲
萬件并全部銷售完,每一萬件的銷售收入為
萬元,且
(
),該公司在電飯煲的生產中所獲年利潤為
(萬元),(注:利潤=銷售收入-成本)
(1)寫出年利潤
(萬元)關于年產量
(萬件)的函數解析式,并求年利潤的最大值;
(2)為了讓年利潤
不低于2360萬元,求年產量
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱臺
中,
與
分別是棱長為1與2的正三角形,平面
平面
,四邊形
為直角梯形,
,
,
為
中點,
(
,
).
![]()
(1)設
中點為
,
,求證:
平面
;
(2)若
到平面
的距離為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F為CD的中點. ![]()
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準
(噸),一位居民的月用水量不超過
的部分按平價收費,超過
的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數據按照
,
,
,
分成9組,制成了如圖所示的頻率分布直方圖.
![]()
(Ⅰ)求直方圖中
的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機抽取3人,記這3人中月均用水量不低于3噸的人數為
,求
的分布列與數學期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準
(噸),估計
的值(精確到0.01),并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某大學自主招生的面試中,考生要從規定的6道科學題,4道人文題共10道題中,隨機抽取3道作答,每道題答對得10分,答錯或不答扣5分,已知甲、乙兩名考生參加面試,甲只能答對其中的6道科學題,乙答對每道題的概率都是
,每個人答題正確與否互不影響.
(1)求考生甲得分
的分布列和數學期望
;
(2)求甲,乙兩人中至少有一人得分不少于15分的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com