【題目】已知直線l1:ax-by-1=0(a、b不同時為0),l2:(a+2)x+y+a=0.
(1)若b=0且l1⊥l2,求實數a的值;
(2)當b=2,且l1∥l2時,求直線l1與l2之間的距離.
科目:高中數學 來源: 題型:
【題目】已知
,函數
在
上是單調遞增函數,則
的取值范圍是______.
【答案】![]()
【解析】∵
,
∴
,
又函數
在
單調遞增,
∴
在
上恒成立,
即
在
上恒成立。
又當
時,
,
∴
。
又
,
∴
。
故實數
的取值范圍是
。
答案: ![]()
點睛:對于導函數和函數單調性的關系要分清以下結論:
(1)當
時,若
,則
在區間D上單調遞增(減);
(2)若函數
在區間D上單調遞增(減),則
在區間D上恒成立。即解題時可將函數單調性的問題轉化為
的問題,但此時不要忘記等號。
【題型】填空題
【結束】
19
【題目】某珠寶店丟了一件珍貴珠寶,以下四人中只有一人說真話,只有一人偷了珠寶.甲:我沒有偷;乙:丙是小偷;丙:丁是小偷;丁:我沒有偷.根據以上條件,可以判斷偷珠寶的人是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
是定義域為
的奇函數,當
.
(Ⅰ)求出函數
在
上的解析式;
(Ⅱ)在答題卷上畫出函數
的圖象,并根據圖象寫出
的單調區間;
![]()
(Ⅲ)若關于
的方程
有三個不同的解,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點
分別是橢圓
的左右頂點,
為其右焦點,
與
的等比中項是
,橢圓的離心率為
.
(1)求橢圓
的方程;
(2)設不過原點
的直線
與該軌跡交于
兩點,若直線
的斜率依次成等比數列,求
的面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】當|a|≤1,|x|≤1時,關于x的不等式|x2﹣ax﹣a2|≤m恒成立,則實數m的取值范圍是( )
A.[
,+∞)
B.[
,+∞)
C.[
,+∞)
D.[
,+∞)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com