【題目】已知橢圓
,點
在橢圓
上,橢圓
的離心率是
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)點
為橢圓長軸的左端點,
為橢圓上異于橢圓
長軸端點的兩點,記直線
斜率分別為
,若
,請判斷直線
是否過定點?若過定點,求該定點坐標(biāo),若不過定點,請說明理由.
【答案】(1)
(2)過定點![]()
【解析】
(1)由點M(﹣1,
)在橢圓C上,且橢圓C的離心率是
,列方程組求出a=2,b
,由此能求出橢圓C的標(biāo)準(zhǔn)方程.
(2)設(shè)點P,Q的坐標(biāo)分別為(x1,y1),(x2,y2),當(dāng)直線PQ的斜率存在時,設(shè)直線PQ的方程為y=kx+m,聯(lián)立
,得:(4k2+3)x2+8kmx+(4m2﹣12)=0,利用根的判別式、韋達(dá)定理,結(jié)合已知條件得直線PQ的方程過定點(1,0);再驗證直線PQ的斜率不存在時,同樣推導(dǎo)出x0=1,從而直線PQ過(1,0).由此能求出直線PQ過定點(1,0).
(1)由點
在橢圓
上,且橢圓
的離心率是
,
可得
,
可解得:![]()
故橢圓
的標(biāo)準(zhǔn)方程為
.
(2)設(shè)點
的坐標(biāo)分別為
,
(ⅰ)當(dāng)直線
斜率不存在時,由題意知,直線方程和曲線方程聯(lián)立得:
,
,
(ⅱ)當(dāng)直線
的斜率存在時,設(shè)直線
的方程為
,
聯(lián)立
,消去
得:
,
由
,有
,
由韋達(dá)定理得:
,
,
故
,可得:
,
可得:
,
整理為:
,
故有
,
化簡整理得:
,解得:
或
,
當(dāng)
時直線
的方程為
,即
,過定點
不合題意,
當(dāng)
時直線
的方程為
,即
,過定點
,
綜上,由(ⅰ)(ⅱ)知,直線
過定點
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為維護(hù)交通秩序,防范電動自行車被盜,天津市公安局決定,開展二輪電動自行車免費登記、上牌照工作.電動自行車牌照分免費和收費(安裝防盜裝置)兩大類,群眾可以 自愿選擇安裝.已知甲、乙、丙三個不同類型小區(qū)的人數(shù)分別為15000,15000,20000.交管部門為了解社區(qū)居民意愿,現(xiàn)采用分層抽樣的方法從中抽取10人進(jìn)行電話訪談.
(Ⅰ)應(yīng)從甲小區(qū)和丙小區(qū)的居民中分別抽取多少人?
(Ⅱ)設(shè)從甲小區(qū)抽取的居民為
,丙小區(qū)抽取的居民為
.現(xiàn)從甲小區(qū)和丙小區(qū)已抽取的居民中隨機(jī)抽取2人接受問卷調(diào)查.
(ⅰ)試用所給字母列舉出所有可能的抽取結(jié)果;
(ⅱ)設(shè)
為事件“抽取的2人來自不同的小區(qū)”,求事件
發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖放置的邊長為1的正方形
沿
軸滾動,點
恰好經(jīng)過原點.設(shè)頂點
的軌跡方程是
,則對函數(shù)
有下列判斷:①函數(shù)
是偶函數(shù);②對任意的
,都有
;③函數(shù)
在區(qū)間
上單調(diào)遞減;④函數(shù)
的值域是
;⑤
.其中判斷正確的序號是__________.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知
為圓
的直徑,點
為線段
上一點,且
,點
為圓
上一點,且
.點
在圓
所在平面上的正投影為點
,
.
![]()
(1)求證:
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
.
(1)判斷函數(shù)在區(qū)間(-1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(2)求該函數(shù)在區(qū)間[2,4]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知sin(-π+θ)+2cos(3π-θ)=0,則
;
(2)已知
.
①化簡f(α);
②若f(α)
,且
,求cos α-sin α的值;
③若![]()
,求f(α)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱
的側(cè)面
是平行四邊形,
,平面
平面
,且
分別是
的中點.
(1)求證:
平面
;
(2)當(dāng)側(cè)面
是正方形,且
時,
(ⅰ)求二面角
的大小;
(ⅱ)在線段
上是否存在點
,使得
?若存在,指出點
的位置;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)
(其中
)的部分圖象如圖所示,把函數(shù)
的圖像向右平移
個單位長度,再向下平移1個單位,得到函數(shù)
的圖像.
![]()
(1)當(dāng)
時,求
的值域
(2)令
,若對任意
都有
恒成立,求
的最大值
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com