【題目】隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長(zhǎng).設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
時(shí)間代號(hào)t | 1 | 2 | 3 | 4 | 5 |
儲(chǔ)蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
(1)求y關(guān)于t的回歸方程![]()
(2)用所求回歸方程預(yù)測(cè)該地區(qū)2015年(
)的人民幣儲(chǔ)蓄存款.
附:回歸方程
中![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,函數(shù)
,則方程
實(shí)數(shù)解的個(gè)數(shù)是( ).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知函數(shù)
.
(1)求函數(shù)
的最小正周期;
(2)將函數(shù)
的圖象向右平移
個(gè)單位長(zhǎng)度,再向下平移a(a>0)個(gè)單位長(zhǎng)度后得到函數(shù)
的圖象,且函數(shù)
的最大值為2.
(ⅰ)求函數(shù)
的解析式;
(ⅱ)證明:存在無(wú)窮多個(gè)互不相同的正整數(shù)
,使得
>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱臺(tái)
中,
分別為
的中點(diǎn).![]()
(1)求證:
平面
;
(2)若![]()
平面
,
求平面
與平面
所成的角(銳角)的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知m,n是兩條不同直線,
,
是兩個(gè)不同平面,則下列命題正確的是
A.若
,
垂直于同一平面,則
與
平行
B.若m,n平行于同一平面,則m與n平行
C.若
,
不平行,則在
內(nèi)不存在與
平行的直線
D.若m,n不平行,則m與n不可能垂直于同一平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x2-ax+b,問(wèn):(1)討論函數(shù)f(sinx)在(
,
)內(nèi)的單調(diào)性并判斷有無(wú)極值,有極值時(shí)求出極值;(2)記f0(x)=
-
x +
,求函數(shù)| f ( sin x ) -
( sin x )| 在[
.
]上的最大值D,(3)在(2)中,取a0=b0=0,求z= b -
滿足D ≤ 1時(shí)的最大值
(1)討論函數(shù)f(sinx)在(
,
)內(nèi)的單調(diào)性并判斷有無(wú)極值,有極值時(shí)求出極值;
(2)記f0(x)=
,求函數(shù)
在
上的最大值D,
(3)在(2)中,取a0=b0=0,求z=
滿足D
1時(shí)的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)求證:當(dāng)
時(shí),
;
(Ⅲ)設(shè)實(shí)數(shù)k使得
對(duì)
恒成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正三棱柱ABC﹣A1B1C1底邊長(zhǎng)為2,E,F(xiàn)分別為BB1 , AB的中點(diǎn). (I)已知M為線段B1A1上的點(diǎn),且B1A1=4B1M,求證:EM∥面A1FC;
(II)若二面角E﹣A1C﹣F所成角的余弦值為
,求AA1的值.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com