【題目】幾何體三視圖如圖所示,其中俯視圖為邊長為
的等邊三角形,則此幾何體的體積為__________.
![]()
【答案】![]()
【解析】根據(jù)幾何體的三視圖可以判斷直觀圖為
![]()
它是從棱柱正三棱柱上切掉幾何體
后剩余的幾何體.可以將該幾何體分為棱錐
和棱錐
.其中,
.點(diǎn)
到面
的距離為正三角形
的高,所以
.兩者加起來得到
.
故本題正確答案為
.
點(diǎn)睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
,
,
,
平面
.
![]()
(1)求證:
平面
;
(2)若
為線段
的中點(diǎn),且過
三點(diǎn)的平面與線段
交于點(diǎn)
,確定點(diǎn)
的位置,說明理由;并求三棱錐
的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項(xiàng)質(zhì)量指標(biāo)存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲,乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項(xiàng)質(zhì)量指標(biāo)值.若該項(xiàng)質(zhì)量指標(biāo)值落在
內(nèi),則為合格品,否則為不合格品.表1是甲流水線樣本的頻數(shù)分布表,圖1是乙流水線樣本的頻率分布直方圖.
![]()
(1)根據(jù)圖,1估計(jì)乙流水線生產(chǎn)產(chǎn)品該質(zhì)量指標(biāo)值的中位數(shù);
(2)若將頻率視為概率,某個(gè)月內(nèi)甲,乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲,乙兩條流水線分別生產(chǎn)出不合格品約多少件?
(3)根據(jù)已知條件完成下面
列聯(lián)表,并回答是否有85%的把握認(rèn)為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲,乙兩條流水線的選擇有關(guān)”?
![]()
附:
(其中
為樣本容量)
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)的乒乓球被指定為乒乓球比賽專用球.日前有關(guān)部門對某批產(chǎn)品進(jìn)行了抽樣檢測,檢測結(jié)果如下表所示:
抽取球數(shù)n | 50 | 100 | 200 | 500 | 1 000 | 2 000 |
優(yōu)等品數(shù)m | 45 | 92 | 194 | 470 | 954 | 1 902 |
優(yōu)等品頻率 |
(1)計(jì)算表中乒乓球?yàn)閮?yōu)等品的頻率.
(2)從這批乒乓球產(chǎn)品中任取一個(gè),檢測出為優(yōu)等品的概率是多少?(結(jié)果保留到小數(shù)點(diǎn)后三位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
在平面直角坐標(biāo)系
中,以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.已知曲線
的極坐標(biāo)方程為
.傾斜角為
,且經(jīng)過定點(diǎn)
的直線
與曲線
交于
兩點(diǎn).
(Ⅰ)寫出直線
的參數(shù)方程的標(biāo)準(zhǔn)形式,并求曲線
的直角坐標(biāo)方程;
(Ⅱ)求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)求出圓
的直角坐標(biāo)方程;
(2)已知圓
與
軸相交于
,
兩點(diǎn),直線
:
關(guān)于點(diǎn)
對稱的直線為
.若直線
上存在點(diǎn)
使得
,求實(shí)數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是
,直線
的參數(shù)方程是
(
為參數(shù)).
(1)求直線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)求曲線
上的點(diǎn)到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
, (a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(Ⅰ) 求
的值
(Ⅱ)若
,試求不等式
的解集;
(Ⅲ)若
,且
,求
在
上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知橢圓
(
),圓
(
),若圓
的一條切線
與橢圓
相交于
兩點(diǎn).
(1)當(dāng)
,
時(shí),若點(diǎn)
都在坐標(biāo)軸的正半軸上,求橢圓
的方程;
(2)若以
為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)
,探究
是否滿足
,并說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com