【題目】某商店銷售某海鮮,統計了春節前后50天該海鮮的需求量
(
,單位:公斤),其頻率分布直方圖如圖所示,該海鮮每天進貨1次,商店每銷售1公斤可獲利50元;若供大于求,剩余的削價處理,每處理1公斤虧損10元;若供不應求,可從其它商店調撥,銷售1公斤可獲利30元.假設商店每天該海鮮的進貨量為14公斤,商店的日利潤為
元.
![]()
(1)求商店日利潤
關于需求量
的函數表達式;
(2)假設同組中的每個數據用該組區間的中點值代替.
①求這50天商店銷售該海鮮日利潤的平均數;
②估計日利潤在區間
內的概率.
科目:高中數學 來源: 題型:
【題目】設橢圓E的方程為
(a>b>0),點O為坐標原點,點A的坐標為(a,0),點B的坐標為(0,b),點M在線段AB上,滿足BM=2MA,直線OM的斜率為
.
(1)求E的離心率e;
(2)設點C的坐標為(0,-b),N為線段AC的中點,點N關于直線AB的對稱點的縱坐標為
,求E的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某校高三年級學生參加社區服務次數進行統計,隨機抽取M名學生作為樣本,得到這M名學生參加社區服務的次數,根據此數據作出了頻數與頻率的統計表和頻率分布直方圖.
分組 | 頻數 | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合計 | M | 1 |
![]()
(1)求出表中M,p及圖中a的值;
(2)若該校高三學生有240人,試估計該校高三學生參加社區服務的次數在區間[10,15)內的人數;
(3)估計這次學生參加社區服務人數的眾數、中位數以及平均數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,曲線
由上半橢圓
:
(
,
)和部分拋物線
:
(
)連接而成,
與
的公共點為
,
,其中
的離心率為
.
![]()
(1)求
,
的值;
(2)過點
的直線
與
,
分別交于點
,
(均異于點
,
),是否存在直線
,使得以
為直徑的圓恰好過
點,若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的左、右焦點分別為
,且橢圓
過點
,離心率
;點
在橢圓
上,延長
與橢圓
交于點
,點
是
中點.
(1)求橢圓C的方程;
(2)若
是坐標原點,記
與
的面積之和為
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
.
Ⅰ
若曲線
在點
處的切線與直線
垂直,求函數
的單調區間;
Ⅱ
若對于
都有
成立,試求a的取值范圍;
Ⅲ
記
當
時,函數
在區間
上有兩個零點,求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(
為自然對數的底,
為常數).
(Ⅰ)討論函數
的單調性;
(Ⅱ)對于函數
和
,若存在常數
,對于任意
,不等式
都成立,則稱直線
是函數
的分界線,設
,問函數
與函數
是否存在“分界線”?若存在,求出常數
;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com