【題目】已知函數(shù)
.
(1)求
在點(diǎn)
處的切線方程;
(2)(i)若
恒成立,求
的取值范圍;
(i i)當(dāng)
時(shí),證明
.
【答案】(1)
;(2)(i)
;(i i)證明見解析.
【解析】
(1)對(duì)函數(shù)求導(dǎo),求得
,利用導(dǎo)數(shù)的幾何意義,即可求得切線方程;
(2)(i)將問題轉(zhuǎn)化為
恒成立,對(duì)參數(shù)
進(jìn)行分類討論,根據(jù)函數(shù)單調(diào)性,即可容易求參數(shù)的范圍;
(i i)當(dāng)
時(shí),
;結(jié)合(i)中所求,可得
,再利用不等式進(jìn)行適度放縮,結(jié)合裂項(xiàng)求和,即可容易證明.
(1)因?yàn)?/span>
,
故可得
,
,
,
所以
在點(diǎn)
處的切線方程為:
,
即
.
(2)(i)因?yàn)?/span>
恒成立,
恒成立,即
恒成立.
令
,則
,
①當(dāng)
時(shí),
,所以
滿足;
②當(dāng)
時(shí),
,
在
上單調(diào)遞減,
因?yàn)?/span>
時(shí),
,所以
不滿足;
③當(dāng)
時(shí),
時(shí),
,
單調(diào)遞增;
時(shí),
,
單調(diào)遞減;
,解得
.
所以
的取值范圍為
.
(i i)
時(shí),
,所以
.
由(i)知:
,即
,所以
.
令
,得
,即
,所以
.
![]()
![]()
![]()
![]()
![]()
![]()
![]()
即證.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,四邊形
是直角梯形,且
是正三角形,
是
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天津市某中學(xué)為全面貫徹“五育并舉,立德樹人”的教育方針,促進(jìn)學(xué)生各科平衡發(fā)展,提升學(xué)生綜合素養(yǎng).該校教務(wù)處要求各班針對(duì)薄弱學(xué)科生成立特色學(xué)科“興趣學(xué)習(xí)小組”(每位學(xué)生只能參加一個(gè)小組),以便課間學(xué)生進(jìn)行相互幫扶.已知該校某班語文數(shù)學(xué)英語三個(gè)興趣小組學(xué)生人數(shù)分別為10人10人15人.經(jīng)過一段時(shí)間的學(xué)習(xí),上學(xué)期期中考試中,他們的成績(jī)有了明顯進(jìn)步.現(xiàn)采用分層抽樣的方法從該班的語文,數(shù)學(xué),英語三個(gè)興趣小組中抽取7人,對(duì)期中考試這三科成績(jī)及格情況進(jìn)行調(diào)查.
(1)應(yīng)從語文,數(shù)學(xué),英語三個(gè)興趣小組中分別抽取多少人?
(2)若抽取的7人中恰好有5人三科成績(jī)?nèi)考案瘢溆?/span>2人三科成績(jī)不全及格.現(xiàn)從這7人中隨機(jī)抽取4人做進(jìn)一步的調(diào)查.
①記
表示隨機(jī)抽取4人中,語文,數(shù)學(xué),英語三科成績(jī)?nèi)案竦娜藬?shù),求隨機(jī)變量
的分布列和數(shù)學(xué)期望;
②設(shè)
為事件“抽取的4人中,有人成績(jī)不全及格”,求事件
發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px的焦點(diǎn)為F,過點(diǎn)F且斜率為1的直線l截得圓:x2+y2=p2的弦長(zhǎng)為2
.
(1)求拋物線C的方程;
(2)若過點(diǎn)F作互相垂直的兩條直線l1、l2,l1與拋物線C交于A、B兩點(diǎn),l2與拋物線C交于D、E兩點(diǎn),M、N分別為弦AB、DE的中點(diǎn),求|MF||NF|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一副斜邊長(zhǎng)為10的直角三角板,將它們斜邊
重合,若將其中一個(gè)三角板沿斜邊折起形成三棱錐
,如圖所示,已知
,
,則三棱錐
的外接球的表面積為______;該三棱錐體積的最大值為_______.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an},{bn}中,an=bn+n,bn=﹣an+1.
(1)證明:數(shù)列{an+3bn}是等差數(shù)列.
(2)求數(shù)列
的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“柯西不等式”是由數(shù)學(xué)家柯西在研究數(shù)學(xué)分析中的“流數(shù)”問題時(shí)得到的,但從歷史的角度講,該不等式應(yīng)當(dāng)稱為柯西﹣﹣布尼亞科夫斯基﹣﹣施瓦茨不等式,因?yàn)檎呛髢晌粩?shù)學(xué)家彼此獨(dú)立地在積分學(xué)中推而廣之,才將這一不等式推廣到完善的地步,在高中數(shù)學(xué)選修教材4﹣5中給出了二維形式的柯西不等式:(a2+b2)(c2+d2)≥(ac+bd)2當(dāng)且僅當(dāng)ad=bc(即
)時(shí)等號(hào)成立.該不等式在數(shù)學(xué)中證明不等式和求函數(shù)最值等方面都有廣泛的應(yīng)用.根據(jù)柯西不等式可知函數(shù)
的最大值及取得最大值時(shí)x的值分別為( 。
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】干支歷法是上古文明的產(chǎn)物,又稱節(jié)氣歷或中國陽歷,是一部深?yuàn)W的歷法.它是用60組各不相同的天干地支標(biāo)記年月日時(shí)的歷法.具體的算法如下:先用年份的尾數(shù)查出天干,如2013年3為癸;再用2013年除以12余數(shù)為9,9為巳.那么2013年就是癸巳年了,
天干 | 甲 | 乙 | 丙 | 丁 | 戊 | 己 | 庚 | 辛 | 壬 | 癸 | ||
4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 | |||
地支 | 子 | 丑 | 寅 | 卯 | 辰 | 巳 | 午 | 未 | 申 | 酉 | 戌 | 亥 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 |
2020年高三應(yīng)屆畢業(yè)生李東是壬午年出生,李東的父親比他大25歲.問李東的父親是哪一年出生( )
A.甲子B.乙丑C.丁巳D.丙卯
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,D是△ABC中,邊BC的中點(diǎn),K為AC與△ABD的外接圓O的交點(diǎn),EK平行于AB且與圓O交于E,若AD=DE,求證:
.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com