【題目】設(shè)n≥2,n∈N* , 有序數(shù)組(a1 , a2 , …,an)經(jīng)m次變換后得到數(shù)組(bm , 1 , bm , 2 , …,bm , n),其中b1 , i=ai+ai+1 , bm , i=bm﹣1 , i+bm﹣1 , i+1(i=1,2,…,n),an+1=a1 , bm﹣1 , n+1=bm﹣1 , 1(m≥2).例如:有序數(shù)組(1,2,3)經(jīng)1次變換后得到數(shù)組(1+2,2+3,3+1),即(3,5,4);經(jīng)第2次變換后得到數(shù)組(8,9,7).
(1)若ai=i(i=1,2,…,n),求b3 , 5的值;
(2)求證:bm , i=
ai+jCmj , 其中i=1,2,…,n. (注:i+j=kn+t時(shí),k∈N* , i=1,2,…,n,則ai+j=a1)
【答案】
(1)解:依題意(1,2,3,4,5,6,7,8,…,n),
第一次變換為(3,5,7,9,11,13,15,…,n+1),
第二次變換為(8,12,16,20,24,28,…,n+4),
第三次變換為(20,28,36,44,52,…,n+12),
∴b3,5=52
(2)解:用數(shù)學(xué)歸納法證明:對m∈N*,bm,i=
ai+jCmj,其中i=1,2,…,n,
(i)當(dāng)m=1時(shí),b1,i=
ai+jC1j,其中i=1,2,…,n,結(jié)論成立,
(ii)假設(shè)m=k時(shí),k∈N*時(shí),bk,i=
ai+jCkj,其中i=1,2,…,n,
則m=k+1時(shí),bk+1,i=bk,i+bk,i+1=
ai+jCkj+
ai+j+1Ckj=
ai+jCkj+
ai+j+1Ckj﹣1,
=aiCk0+
ai+j(Ckj+Ckj﹣1)+ai+k+1Ckk,
=aiCk+10+
ai+jCk+1j+ai+k+1Ck+1k+1,
=
ai+jCk+1j,
所以結(jié)論對m=k+1時(shí)也成立,
由(i)(ii)可知,對m∈N*,bm,i=
ai+jCmj,其中i=1,2,…,n成立
【解析】(1)根據(jù)新定義,分別進(jìn)行1次,2次,3次變化,即可求出答案,(2)利用數(shù)學(xué)歸納法證明即可.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知美國蘋果公司生產(chǎn)某款iphone手機(jī)的年固定成本為40萬美元,每生產(chǎn)1只還需另投入16美元.設(shè)蘋果公司一年內(nèi)共生產(chǎn)該款iphone手機(jī)x萬只并全部銷售完,每萬只的銷售收入為R(x)萬美元,且R(x)= ![]()
(1)寫出年利潤W(萬元)關(guān)于年產(chǎn)量x(萬只)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬只時(shí),蘋果公司在該款手機(jī)的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足
=
.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2
,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
,點(diǎn)
,直線
.
(1)求與圓
相切,且與直線
垂直的直線方程;
(2)在直線
上(
為坐標(biāo)原點(diǎn)),存在定點(diǎn)
(不同于點(diǎn)
),滿足:對于圓
上任一點(diǎn)
,都有
為一常數(shù),試求所有滿足條件的點(diǎn)
的坐標(biāo).
【答案】(1)
;(2)答案見解析.
【解析】試題分析:
(1)設(shè)所求直線方程為
,利用圓心到直線的距離等于半徑可得關(guān)于b的方程,解方程可得
,則所求直線方程為![]()
(2)方法1:假設(shè)存在這樣的點(diǎn)
,由題意可得
,則
,然后證明
為常數(shù)
為即可.
方法2:假設(shè)存在這樣的點(diǎn)
,使得
為常數(shù)
,則
,據(jù)此得到關(guān)于
的方程組,求解方程組可得存在點(diǎn)
對于圓
上任一點(diǎn)
,都有
為常數(shù)
.
試題解析:
(1)設(shè)所求直線方程為
,即
,
∵直線與圓相切,∴
,得
,
∴所求直線方程為![]()
(2)方法1:假設(shè)存在這樣的點(diǎn)
,
當(dāng)
為圓
與
軸左交點(diǎn)
時(shí),
;
當(dāng)
為圓
與
軸右交點(diǎn)
時(shí),
,
依題意,
,解得,
(舍去),或
.
下面證明點(diǎn)
對于圓
上任一點(diǎn)
,都有
為一常數(shù).
設(shè)
,則
,
∴
,
從而
為常數(shù).
方法2:假設(shè)存在這樣的點(diǎn)
,使得
為常數(shù)
,則
,
∴
,將
代入得,
,即
對
恒成立,
∴
,解得
或
(舍去),
所以存在點(diǎn)
對于圓
上任一點(diǎn)
,都有
為常數(shù)
.
點(diǎn)睛:求定值問題常見的方法有兩種:
(1)從特殊入手,求出定值,再證明這個(gè)值與變量無關(guān).
(2)直接推理、計(jì)算,并在計(jì)算推理的過程中消去變量,從而得到定值.
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù)
的導(dǎo)函數(shù)為
,其中
為常數(shù).
(1)當(dāng)
時(shí),求
的最大值,并推斷方程
是否有實(shí)數(shù)解;
(2)若
在區(qū)間
上的最大值為-3,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知點(diǎn)
為直線
上一點(diǎn),過點(diǎn)
作
的垂線與以
為直徑的圓
相交于
,
兩點(diǎn).
(1)若
,求圓
的方程;
(2)求證:點(diǎn)
始終在某定圓上.
(3)是否存在一定點(diǎn)
(異于點(diǎn)
),使得
為常數(shù)?若存在,求出定點(diǎn)
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某機(jī)械廠要將長
,寬
的長方形鐵皮
進(jìn)行裁剪.已知點(diǎn)
為
的中點(diǎn),點(diǎn)
在邊
上,裁剪時(shí)先將四邊形
沿直線
翻折到
處(點(diǎn)
分別落在直線
下方點(diǎn)
處,
交邊
于點(diǎn)
),再沿直線
裁剪.
![]()
(1)當(dāng)
時(shí),試判斷四邊形
的形狀,并求其面積;
(2)若使裁剪得到的四邊形
面積最大,請給出裁剪方案,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2x﹣a,g(x)=x+2.
(1)當(dāng)a=1時(shí),求不等式f(x)+f(﹣x)≤g(x)的解集;
(2)求證:
中至少有一個(gè)不小于
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:
+
=1(a>b>0)的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是直角三角形的3個(gè)頂點(diǎn),直線l:y=﹣x+3與橢圓E有且只有一個(gè)公共點(diǎn)T.
(Ⅰ)求橢圓E的方程及點(diǎn)T的坐標(biāo);
(Ⅱ)設(shè)O是坐標(biāo)原點(diǎn),直線l′平行于OT,與橢圓E交于不同的兩點(diǎn)A、B,且與直線l交于點(diǎn)P.證明:存在常數(shù)λ,使得|PT|2=λ|PA||PB|,并求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ2﹣2ρcosθ﹣4=0
(1)若直線l與曲線C沒有公共點(diǎn),求m的取值范圍;
(2)若m=0,求直線l被曲線C截得的弦長.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com