【題目】過拋物線
:
的焦點
的直線
(傾斜角為銳角)交拋物線于
,
兩點,若
為線段
的中點,連接
并延長交拋物線
于點
,已知
,則直線
的斜率是( )
A.
B.
C.
D. ![]()
科目:高中數學 來源: 題型:
【題目】如圖是某手機商城2018年華為、蘋果、三星三種品牌的手機各季度銷量的百分比堆積圖(如:第三季度華為銷量約占50%,蘋果銷量約占20%,三星銷量約占30%).根據該圖,以下結論中一定正確的是( )
![]()
A.華為的全年銷量最大B.蘋果第二季度的銷量大于第三季度的銷量
C.華為銷量最大的是第四季度D.三星銷量最小的是第四季度
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系,將曲線
上的每一個點的橫坐標保持不變,縱坐標縮短為原來的
,得到曲線
,以坐標原點
為極點,
軸的正半軸為極軸,建立極坐標系,
的極坐標方程為
.
(Ⅰ)求曲線
的參數方程;
(Ⅱ)過原點
且關于
軸對稱的兩條直線
與
分別交曲線
于
、
和
、
,且點
在第一象限,當四邊形
的周長最大時,求直線
的普通方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩名射擊運動員進行射擊比賽,甲的中靶概率為0.8,乙的中靶概率為0.9,求下列事件的概率:
(1)兩人都中靶;
(2)恰好有一人中靶;
(3)兩人都脫靶;
(4)至少有一人中靶.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩人獨立地解決同一問題,甲解出此問題的概率是
,乙解出此問題的概率是
.求:
(1)甲、乙都解出此問題的概率;
(2)甲、乙都未解出此問題的概率;
(3)甲、乙恰有一人解出此問題的概率;
(4)至少有一人解出此問題的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】質檢部門從某超市銷售的甲、乙兩種食用油中分別隨機抽取100桶檢測某項質量指標,由檢測結果得到如圖的頻率分布直方圖:
![]()
(I)寫出頻率分布直方圖(甲)中
的值;記甲、乙兩種食用油100桶樣本的質量指標的方差分別為
,試比較
的大小(只要求寫出答案);
(Ⅱ)佑計在甲、乙兩種食用油中各隨機抽取1桶,恰有一個桶的質量指標大于20,且另—個桶的質量指標不大于20的概率;
(Ⅲ)由頻率分布直方圖可以認為,乙種食用油的質量指標值
服從正態分布
.其中
近似為樣本平均數
,
近似為樣本方差
,設
表示從乙種食用油中隨機抽取10桶,其質量指標值位于(14.55, 38.45)的桶數,求
的數學期望.
注:①同一組數據用該區間的中點值作代表,計算得
:
②若
,則
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com