【題目】已知橢圓
與直線
都經過點
.直線
與
平行,且與橢圓
交于
兩點,直線
與
軸分別交于
兩點.
(1)求橢圓
的方程;
(2)證明:
為等腰三角形.
【答案】(1)
;(2)證明見解析.
【解析】試題分析:(1)將點M分別代入直線方程及橢圓方程,即可求得a和b的值,求得橢圓方程;
(2)設直線m的方程,代入橢圓方程,利用韋達定理及直線的斜率公式求得kMA+kMB=0,即可求得△MEF為等腰三角形.
試題解析:
(1)由直線
都經過點
,則a=2b,將
代入橢圓方程:
,解得:b2=4,a2=16,橢圓
的方程為
。
(2)設直線
為:
, ![]()
聯立:
,得
于是
設直線
的斜率為
,要證
為等腰三角形,只需![]()
,
,
,
,
所以
為等腰三角形.
點睛: 本題考查橢圓的標準方程,直線與橢圓的位置關系,考查韋達定理,直線的斜率公式,考查計算能力,證明三角形為等腰三角形轉化為證明斜率之和為0是關鍵.
科目:高中數學 來源: 題型:
【題目】關于函數
,有下列結論:
①
的定義域為(-1, 1); ②
的值域為(
,
);
③
的圖象關于原點成中心對稱; ④
在其定義域上是減函數;
⑤對
的定義城中任意
都有
.
其中正確的結論序號為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
為圓
上一動點,圓心
關于
軸的對稱點為
,點
分別是線段
上的點,且
.
(1)求點
的軌跡方程;
(2)直線
與點
的軌跡
只有一個公共點
,且點
在第二象限,過坐標原點
且與
垂直的直線
與圓
相交于
兩點,求
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
,函數
.
Ⅰ
若函數
在
和
上單調性相反,求
的解析式;
Ⅱ
若
,不等式
在
上恒成立,求a的取值范圍;
Ⅲ
已知
,若函數
在區間
內有且只有一個零點,試確定實數a的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解某學段1000名學生的百米成績情況,隨機抽取了若干學生的百米成績,成績全部介于13秒與18秒之間,將成績按如下方式分成五組:第一組[13,14);第二組[14,15);…;第五組[17,18].按上述分組方法得到的頻率分布直方圖如右圖所示,已知圖中從左到右的前3個組的頻率之比為3:8:19,且第二組的頻數為8. ![]()
(1)將頻率當作概率,請估計該學段學生中百米成績在[16,17)內的人數以及所有抽取學生的百米成績的中位數(精確到0.01秒);
(2)若從第一、五組中隨機取出兩個成績,求這兩個成績的差的絕對值大于1秒的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點,E為線段PC上一點.
![]()
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當PA∥平面BDE時,求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正四棱柱ABCD﹣A1B1C1D1中,AB=
,AA1=2,設四棱柱的外接球的球心為O,動點P在正方形ABCD的邊上,射線OP交球O的表面于點M,現點P從點A出發,沿著A→B→C→D→A運動一次,則點M經過的路徑長為( )
A.![]()
B.2
π
C.![]()
D.4
π
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】重慶一中為了增強學生的記憶力和辨識力,組織了一場類似《最強大腦》的
賽,
兩隊各由4名選手組成,每局兩隊各派一名選手
,除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分.假設每局比賽
隊選手獲勝的概率均為
,且各局比賽結果相互獨立,比賽結束時
隊的得分高于
隊的得分的概率為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,若
且sinC=cosA (Ⅰ)求角A、B、C的大小;
(Ⅱ)函數f(x)=sin(2x+A)+cos(2x﹣
),求函數f(x)單調遞增區間,指出它相鄰兩對稱軸間的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com