【題目】已知橢圓C:
1(a>b>0),橢圓C上的點到焦點距離的最大值為9,最小值為1.
(1)求橢圓C的標準方程;
(2)求橢圓C上的點到直線l:4x﹣5y+40=0的最小距離?
【答案】(1)
.(2)
.
【解析】
(1)根據題意列出方程組,求出
,
,
,從而求出橢圓的標準方程.
(2)由題可知直線
與橢圓不相交,將直線
平移,可知其與橢圓相切時,切點到直線
的距離最小或最大,據此可設直線
平行于直線
,將之與橢圓方程聯立,進而得解.
(1)因為橢圓C上的點到焦點距離的最大值為9,最小值為1,
所以a+c=9,a﹣c=1,
∴a=5,c=4,
∴b2=a2﹣c2=9,
∴橢圓的標準方程為:
;
(2)由直線l的方程與橢圓的方程可以知道,直線l與橢圓不相交,
設直線m平行于直線l,則直線m的方程可以寫成4x﹣5y+k=0,
聯立
,整理得25x2+8kx+k2﹣225=0,
令△=0,得64k2﹣4×25(k2﹣225)=0
解得k1=25或k2=﹣25,
∴當k1=25時,直線m與橢圓交點到直線l的距離最近,
此時直線m的方程為4x﹣5y+25=0,
直線m與直線l間的距離d
,
所以,橢圓C上的點到直線l:4x﹣5y+40=0的最小距離是
.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(kx+
)ex﹣2x,若f(x)<0的解集中有且只有一個正整數,則實數k的取值范圍為 ( )
A. [
,
)B. (
,
]
C. [
)D. [
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分,(1)小問5分,(2)小問7分)
如圖,橢圓
的左、右焦點分別為
過
的直線交橢圓于
兩點,且![]()
![]()
(1)若
,求橢圓的標準方程
(2)若
求橢圓的離心率![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a>0,且a≠1.命題P:函數f(x)=logax在(0,+∞)上為增函數;命題Q:函數g(x)=x2﹣2ax+4有零點.
(1)若命題P,Q滿足P真Q假,求實數a的取值范圍;
(2)命題S:函數y=f(g(x))在區間[2,+∞)上值恒為正數.若命題S為真命題,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著手機的發展,“微信”逐漸成為人們支付購物的一種形式.某機構對“使用微信支付”的態度進行調查,隨機抽取了50人,他們年齡的頻數分布及對“使用微信支付”贊成人數如下表.
年齡 (單位:歲) |
|
|
|
|
|
|
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡45歲為分界點”,由以上統計數據完成下面
列聯表,并判斷是否有99%的把握認為“使用微信支付”的態度與人的年齡有關;
年齡不低于45歲的人數 | 年齡低于45歲的人數 | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若從年齡在
的被調查人中按照贊成與不贊成分層抽樣,抽取5人進行追蹤調查,在5人中抽取3人做專訪,求3人中不贊成使用微信支付的人數的分布列和期望值.
參考數據:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:
1左右焦點為F1,F2直線(
1)x
y
0與該橢圓有一個公共點在y軸上,另一個公共點的坐標為(m,1).
(1)求橢圓C的方程;
(2)設P為橢圓C上任一點,過焦點F1,F2的弦分別為PM,PN,設
λ1
λ2
,求λ1+λ2的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】記焦點在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓
,以橢圓
的焦點為頂點作相似橢圓
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設直線
與橢圓
交于
兩點,且與橢圓
僅有一個公共點,試判斷
的面積是否為定值(
為坐標原點)?若是,求出該定值;若不是,請說明理由.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直角梯形ABCD中,AB∥CD,∠BAD=90°,AB=AD=1,CD=2,若將△BCD沿著BD折起至△BC'D,使得AD⊥BC'.
![]()
(1)求證:平面C'BD⊥平面ABD;
(2)求C'D與平面ABC'所成角的正弦值;
(3)M為BD中點,求二面角M﹣AC'﹣B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線E的極坐標方程為4(ρ2-4)sin2θ=(16-ρ2)cos2θ,以極軸為x軸的非負半軸,極點O為坐標原點,建立平面直角坐標系.
(1)寫出曲線E的直角坐標方程;
(2)若點P為曲線E上動點,點M為線段OP的中點,直線l的參數方程為
(t為參數),求點M到直線l的距離的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com