【題目】已知函數(shù)
是偶函數(shù).
(1)求實數(shù)k的值;
(2)設函數(shù)
,若方程
只有一個實數(shù)根,求實數(shù)m的取值范圍.
【答案】(1)
;(2)
或
.
【解析】
(1)根據(jù)偶函數(shù)的定義,即可求出;
(2)先將方程
化簡可得,
,換元,令
,得
,然后由函數(shù)
的定義域確定方程中
的范圍,進而得到
的范圍,所以
在該范圍內(nèi)只有一個解,分類討論,再根據(jù)一元二次方程有解的條件,二次函數(shù)的有關性質(zhì),零點存在性定理,即可求出.
(1)由
是偶函數(shù).則
恒成立,
即
.
,
,
.
(2)方程
只有一個根,
則關于x的方程
只有一個解,
![]()
![]()
![]()
令
,得:![]()
因為
中,
,則![]()
當
時,需要
,則
;
當
時,需要
,則
,
設
,當
時,對稱軸方程為![]()
令
,若
,得
,或
.
①當
時,
,拋物線開口向上,此時
,
,
,![]()
所以
在
上有唯一解,即
滿足題意.
②當
時,即
時,由
得
,不滿足題意.
③當
時,
,
,
且
,
所以
在
上無解,不滿足題意.
④當
且
時,
,則
無解,不滿足題意.
⑤當
時,
且
,
,
,
此時
在
上有唯一解,即
滿足題意.
⑥當
時,
,
且
,又
,
,
所以
在
上有兩個不等實根,即
不滿足題意.
綜上所述,m的取值范圍是
或
.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在直三棱柱ABC-A1B1C1中,CA=4,CB=4,CC1=2
,∠ACB=90°,點M在線段A1B1上.
![]()
(1)若A1M=3MB1,求異面直線AM和A1C所成角的余弦值;
(2)若直線AM與平面ABC1所成角為30°,試確定點M的位置.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設
為兩個隨機事件,給出以下命題:(1)若
為互斥事件,且
,
,則
;(2)若
,
,
,則
為相互獨立事件;(3)若
,
,
,則
為相互獨立事件;(4)若
,
,
,則
為相互獨立事件;(5)若
,
,
,則
為相互獨立事件;其中正確命題的個數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益P與投入
(單位:萬元)滿足
,乙城市收益Q與投入
(單位:萬元)滿足
,設甲城市的投入為
(單位:萬元),兩個城市的總收益為
(單位:萬元).
(1)當甲城市投資50萬元時,求此時公司總收益;
(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》中盈不足章中有這樣一則故事:“今有良馬與駑馬發(fā)長安,至齊. 齊去長安三千里. 良馬初日行一百九十三里,日增一十二里;駑馬初日行九十七里,日減二里.” 為了計算每天良馬和駑馬所走的路程之和,設計框圖如下圖. 若輸出的
的值為 350,則判斷框中可填( )
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】閱讀:
已知
、
,
,求
的最小值.
解法如下:
,
當且僅當
,即
時取到等號,
則
的最小值為
.
應用上述解法,求解下列問題:
(1)已知
,
,求
的最小值;
(2)已知
,求函數(shù)
的最小值;
(3)已知正數(shù)
、
、
,
,
求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某縣畜牧技術員張三和李四9年來一直對該縣山羊養(yǎng)殖業(yè)的規(guī)模進行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數(shù)量y(單位:萬只)與相成年份x(序號)的數(shù)據(jù)表和散點圖(如圖所示),根據(jù)散點圖,發(fā)現(xiàn)y與x有較強的線性相關關系,李四提供了該縣山羊養(yǎng)殖場的個數(shù)z(單位:個)關于x的回歸方程
.
![]()
(1)根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計量,求y關于x的線性回歸方程(參考統(tǒng)計量:
);
(2)試估計:①該縣第一年養(yǎng)殖山羊多少萬只?
②到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?
附:對于一組數(shù)據(jù)
,其回歸直線
的斜率和截距的最小二乘估計分別為
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來隨著我國在教育科研上的投入不斷加大,科學技術得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競爭力得到大幅提升.某品牌公司一直默默拓展海外市場,在海外設了多個分支機構,現(xiàn)需要國內(nèi)公司外派大量中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從中青年員工中隨機調(diào)查了
位,得到數(shù)據(jù)如下表:
愿意被外派 | 不愿意被外派 | 合計 | |
中年員工 |
|
|
|
青年員工 |
|
|
|
合計 |
|
|
|
由
并參照附表,得到的正確結論是
附表:
| 0.10 | 0.01 | 0.001 |
| 2.706 | 6.635 | 10.828 |
A. 在犯錯誤的概率不超過10%的前提下,認為 “是否愿意外派與年齡有關”;
B. 在犯錯誤的概率不超過10%的前提下,認為 “是否愿意外派與年齡無關”;
C. 有99% 以上的把握認為“是否愿意外派與年齡有關”;
D. 有99% 以上的把握認為“是否愿意外派與年齡無關”.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com