【題目】己知函數(shù)f(x)=(x+l)lnx﹣ax+a (a為正實(shí)數(shù),且為常數(shù))
(1)若f(x)在(0,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范圍.
【答案】
(1)解:f(x)=(x+l)lnx﹣ax+a,f′(x)=lnx+
+1﹣a,
若f(x)在(0,+∞)上單調(diào)遞增,
則a≤lnx+
+1在(0,+∞)恒成立,(a>0),
令g(x)=lnx+
+1,(x>0),
g′(x)=
,
令g′(x)>0,解得:x>1,令g′(x)<0,解得:0<x<1,
故g(x)在(0,1)遞減,在(1,+∞)遞增,
故g(x)min=g(1)=2,
故0<a≤2;
(2)解:若不等式(x﹣1)f(x)≥0恒成立,
即(x﹣1)[(x+1)lnx﹣a]≥0恒成立,
①x≥1時(shí),只需a≤(x+1)lnx恒成立,
令m(x)=(x+1)lnx,(x≥1),
則m′(x)=lnx+
+1,
由(1)得:m′(x)≥2,
故m(x)在[1,+∞)遞增,m(x)≥m(1)=0,
故a≤0,而a為正實(shí)數(shù),故a≤0不合題意;
②0<x<1時(shí),只需a≥(x+1)lnx,
令n(x)=(x+1)lnx,(0<x<1),
則n′(x)=lnx+
+1,由(1)n′(x)在(0,1)遞減,
故n′(x)>n(1)=2,
故n(x)在(0,1)遞增,故n(x)<n(1)=0,
故a≥0,而a為正實(shí)數(shù),故a>0.
【解析】(1)求出函數(shù)f(x)的導(dǎo)數(shù),問(wèn)題轉(zhuǎn)化為a≤lnx+
+1在(0,+∞)恒成立,(a>0),令g(x)=lnx+
+1,(x>0),根據(jù)函數(shù)的單調(diào)性求出a的范圍即可;(2)問(wèn)題轉(zhuǎn)化為(x﹣1)[(x+1)lnx﹣a]≥0恒成立,通過(guò)討論x的范圍,結(jié)合函數(shù)的單調(diào)性求出a的范圍即可.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,側(cè)棱
底面
,底面
為長(zhǎng)方形,且
,
是
的中點(diǎn),作
交
于點(diǎn)
.
![]()
(1)證明:
平面
;
(2)若三棱錐
的體積為
,求二面角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(
)直線過(guò)點(diǎn)(2,3),且當(dāng)傾斜角是直線
的傾斜角的二倍時(shí),求直線方程.
(
)當(dāng)與
軸正半軸交于
點(diǎn)、
軸正半軸交于
點(diǎn),且
的面積最小時(shí),求直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,則
(
)函數(shù)
定義域?yàn)?/span>__________.
(
)函數(shù)
導(dǎo)函數(shù)為
__________.
(
)對(duì)函數(shù)
單調(diào)研究如下
| |||||
|
|
| |||
|
____
(
)設(shè)函數(shù)
則
函數(shù)
的最大值為__________.
(5)函數(shù)
極值點(diǎn)共__________個(gè),(6)其中極小值點(diǎn)有__________個(gè).
(7)若關(guān)于
的方程
恰有三個(gè)不相同的實(shí)數(shù)解,則
的取值范圍為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
,圓心為
,定點(diǎn)
,
為圓
上一點(diǎn),線段
上一點(diǎn)
滿足
,直線
上一點(diǎn)
,滿足
.
(Ⅰ)求點(diǎn)
的軌跡
的方程;
(Ⅱ)
為坐標(biāo)原點(diǎn),
是以
為直徑的圓,直線
與
相切,并與軌跡
交于不同的兩點(diǎn)
.當(dāng)
且滿足
時(shí),求
面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某山區(qū)小學(xué)有100名四年級(jí)學(xué)生,將全體四年級(jí)學(xué)生隨機(jī)按00~99編號(hào),并且按編號(hào)順序平均分成10組.現(xiàn)要從中抽取10名學(xué)生,各組內(nèi)抽取的編號(hào)按依次增加10進(jìn)行系統(tǒng)抽樣.
![]()
(1)若抽出的一個(gè)號(hào)碼為22,則此號(hào)碼所在的組數(shù)是多少?據(jù)此寫出所有被抽出學(xué)生的號(hào)碼;
(2)分別統(tǒng)計(jì)這10名學(xué)生的數(shù)學(xué)成績(jī),獲得成績(jī)數(shù)據(jù)的莖葉圖如圖4所示,求該樣本的方差;
(3)在(2)的條件下,從這10名學(xué)生中隨機(jī)抽取兩名成績(jī)不低于73分的學(xué)生,求被抽取到的兩名學(xué)生的成績(jī)之和不小于154分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線
和
是異面直線,
在平面
內(nèi),
在平面
內(nèi),
是平面
與平面
的交線,則下列結(jié)論正確的是( )
A.
至少與
,
中的一條相交 B.
與
,
都不相交
C.
與
,
都相交 D.
至多與
,
中的一條相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
(
)的左右焦點(diǎn)分別為
、
,離心率
.過(guò)
的直線交橢圓于
、
兩點(diǎn),三角形
的周長(zhǎng)為
.
(1)求橢圓的方程;
(2)若弦
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐
中,
,
,
,若該三棱錐的四個(gè)頂點(diǎn)均在同一球面上,則該球的體積為( )
![]()
A.
B.
C.
D. ![]()
【答案】D
【解析】在三棱錐
中,因?yàn)?/span>
,
,
,所以
,則該幾何體的外接球即為以
為棱長(zhǎng)的長(zhǎng)方體的外接球,則
,其體積為
;故選D.
點(diǎn)睛:在處理幾何體的外接球問(wèn)題,往往將所給幾何體與正方體或長(zhǎng)方體進(jìn)行聯(lián)系,常用補(bǔ)體法補(bǔ)成正方體或長(zhǎng)方體進(jìn)行處理,本題中由數(shù)量關(guān)系可證得
從而幾何體的外接球即為以
為棱長(zhǎng)的長(zhǎng)方體的外接球,也是處理本題的技巧所在.
【題型】單選題
【結(jié)束】
21
【題目】已知函數(shù)
,則
的大致圖象為( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com