【題目】已知:正三棱柱
中,
,
,
為棱
的中點(diǎn).
(
)求證:
平面
.
(
)求證:平面
平面
.
(
)求四棱錐
的體積.
![]()
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)
.
【解析】試題分析:
(1)要證線面平行,就是要證線線平行,考慮過(guò)直線
的平面
與平面
的交線
(其中
是
與
的交點(diǎn)),而由中位線定理易得
,從而得線面平行;
(2)由于
是正三角形,因此有
,從而只要再證
與平面
內(nèi)另一條直線垂直即可,這可由正棱柱的側(cè)棱與底面垂直得到,從而得線面垂直,于是有面面垂直;
(3)要求四棱錐的體積,由正三棱柱的性質(zhì)知
中,邊
的高就是四棱錐的高,再求得四邊形
的面積,即可得體積.
試題解析:
(
)證明:連接
,交
于
點(diǎn),連接
,
∵在
中,
,
分別是
,
中點(diǎn),
∴
,
∵
平面
,
平面
,
∴
平面
,
(
)證明:∵在等邊
中,
是棱
中點(diǎn),
∴
,
又∵在正三棱柱中,
平面
,
平面
,
∴
,
∵
點(diǎn),
,
平面
,
∴
平面
,
∵
平面
,
∴平面
平面
.
(
)作
于
點(diǎn),
∴
是四棱錐
高,
,
底面積
,
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,點(diǎn)
分別為橢圓的右頂點(diǎn)、上頂點(diǎn)和右焦點(diǎn),且
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)直線
與橢圓
交于
兩點(diǎn),求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
,直線
與圓
相切,且交橢圓
于
,
兩點(diǎn),
是橢圓的半焦距,
.
(1)求
的值;
(2)
為坐標(biāo)原點(diǎn),若
,求橢圓
的方程;
(3)在(2)的條件下,設(shè)橢圓
的左右頂點(diǎn)分別為
,
,動(dòng)點(diǎn)
,直線
,
與直線
分別交于
,
兩點(diǎn),求線段
的長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩條不重合的直線
和兩個(gè)不重合的平面
,若
,則下列四個(gè)命題:①若
,則
;②若
,則
; ③若
,則
;④若
,則
,其中正確命題的個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
),曲線
在點(diǎn)
處的切線與直線
垂直.
(Ⅰ)試比較
與
的大小,并說(shuō)明理由;
(Ⅱ)若函數(shù)
有兩個(gè)不同的零點(diǎn)
,
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)
,動(dòng)圓
經(jīng)過(guò)點(diǎn)
且和直線
相切,記動(dòng)圓的圓心
的軌跡為曲線
.
(1)求曲線
的方程;
(2)設(shè)曲線
上一點(diǎn)
的橫坐標(biāo)為
,過(guò)
的直線交
于一點(diǎn)
,交
軸于點(diǎn)
,過(guò)點(diǎn)
作
的垂線交
于另一點(diǎn)
,若
是
的切線,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校隨機(jī)抽取100名學(xué)生調(diào)查寒假期間學(xué)生平均每天的學(xué)習(xí)時(shí)間,被調(diào)查的學(xué)生每天用于學(xué)習(xí)的時(shí)間介于1小時(shí)和11小時(shí)之間,按學(xué)生的學(xué)習(xí)時(shí)間分成5組:第一組
,第二組
,第三組
,第四組
,第五組
,繪制成如圖所示的頻率分布直方圖.
![]()
(1)求學(xué)習(xí)時(shí)間在
的學(xué)生人數(shù);
(2)現(xiàn)要從第三組、第四組中用分層抽樣的方法抽取6人,從這6人中隨機(jī)抽取2人交流學(xué)習(xí)心得,求這2人中至少有1人學(xué)習(xí)時(shí)間在第四組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)y=x2+(a+2)x﹣3,x∈[a,b]的圖象關(guān)于直線x=1對(duì)稱.
(1)求a、b的值和函數(shù)的零點(diǎn)
(2)當(dāng)函數(shù)f(x)的定義域是[0,3]時(shí),求函數(shù)f(x)的值域..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)國(guó)家環(huán)保部最新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過(guò)35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過(guò)75微克/立方米。某城市環(huán)保部分隨機(jī)抽取的一居民區(qū)過(guò)去20天PM2.5的24小時(shí)平均濃度的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下:
組別 | PM2.5平均濃度 | 頻數(shù) | 頻率 |
第一組 | (0,25] | 3 | 0.15 |
第二組 | (25,50] | 12 | 0.6 |
第三組 | (50,75] | 3 | 0.15 |
第四組 | (75,100] | 2 | 0.1 |
(Ⅰ)從樣本中PM2.5的24小時(shí)平均濃度超過(guò)50微克/立方米的5天中,隨機(jī)抽取2天,求恰好有一天PM2.5的24小時(shí)平均濃度超過(guò)75微克/立方米的概率;
(II)求樣本平均數(shù),并根據(jù)樣本估計(jì)總計(jì)的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn)?并說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com