【題目】如圖,在四面體A-BCD中,已知平面
平面BCD,
為正三角形,
為等腰直角三角形,其中C為直角頂點,E,F分別為校AC,AD的中點.
![]()
(1)求證:
平面BEF;
(2)求證:
平面ACD.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年新冠肺炎疫情暴發(fā)以來,中國政府迅速采取最全面、最嚴(yán)格、最徹底的防控舉措,堅決遏制疫情蔓延勢頭,努力把疫情影響降到最低,為全世界抗擊新冠肺炎疫情做岀了貢獻.為普及防治新冠肺炎的相關(guān)知識,某高中學(xué)校開展了線上新冠肺炎防控知識競答活動,現(xiàn)從大批參與者中隨機抽取200名幸運者,他們的得分(滿分100分)數(shù)據(jù)統(tǒng)計結(jié)果如圖:
![]()
(1)若此次知識競答得分
整體服從正態(tài)分布,用樣本來估計總體,設(shè)
,
分別為這200名幸運者得分的平均值和標(biāo)準(zhǔn)差(同一組數(shù)據(jù)用該區(qū)間中點值代替),求
,
的值(
,
的值四舍五入取整數(shù)),并計算
;
(2)在(1)的條件下,為感謝大家積極參與這次活動,對參與此次知識競答的幸運者制定如下獎勵方案:得分低于
的獲得1次抽獎機會,得分不低于
的獲得2次抽獎機會.假定每次抽獎中,抽到18元紅包的概率為
,抽到36元紅包的概率為
.已知高三某同學(xué)是這次活動中的幸運者,記
為該同學(xué)在抽獎中獲得紅包的總金額,求
的分布列和數(shù)學(xué)期望,并估算舉辦此次活動所需要抽獎紅包的總金額.
參考數(shù)據(jù):
;
;
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左右頂點分別為A,B,離心率為
,長軸長為4,動點S在C上位于x軸上方,直線
與直線
,分別交于M,N兩點.
![]()
(1)求橢圓C的方程
(2)求|MN|的最小值
(3)當(dāng)
最小時,在橢圓C上是否存在這樣的點T,使△TSB面積為
?若存在,請確定點T的個數(shù);若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市旅游管理部門為提升該市26個旅游景點的服務(wù)質(zhì)量,對該市26個旅游景點的交通、安全、環(huán)保、衛(wèi)生、管理五項指標(biāo)進行評分,每項評分最低分0分,最高分100分,每個景點總分為這五項得分之和,根據(jù)考核評分結(jié)果,繪制交通得分與安全得分散點圖、交通得分與景點總分散點圖如下:
![]()
請根據(jù)圖中所提供的信息,完成下列問題:
(I)若從交通得分前6名的景點中任取2個,求其安全得分都大于90分的概率;
(II)若從景點總分排名前6名的景點中任取3個,記安全得分不大于90分的景點個數(shù)為
,求隨機變量
的分布列和數(shù)學(xué)期望;
(III)記該市26個景點的交通平均得分為
安全平均得分為
,寫出
和
的大小關(guān)系?(只寫出結(jié)果)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖.正四面體ABCD的頂點A,B,C分別在兩兩垂直的三條射線OX,OY,OZ上,則在下列命題中,錯誤的為( )
![]()
A.O﹣ABC是正三棱錐B.二面角D﹣OB﹣A的平面角為![]()
C.直線AD與直線OB所成角為
D.直線OD⊥平面ABC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在空間直角坐標(biāo)系
中,已知正四棱錐P-ABCD的所有棱長均為6,正方形ABCD的中心為坐標(biāo)原點O,AD,BC平行于x軸,AB、CD平行于y軸,頂點P在z軸的正半軸上,點M、N分別在PA,BD上,且
.
![]()
(1)若
,求直線MN與PC所成角的大小;
(2)若二面角A-PN-D的平面角的余弦值為
,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓
的右焦點、右頂點分別為F,A,過原點的直線與橢圓C交于點P、Q(點P在第一象限內(nèi)),連結(jié)PA,QF.若
,
的面積是
面積的3倍.
![]()
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知M為線段PA的中點,連結(jié)QA,QM.
①求證:Q,F,M三點共線;
②記直線QP,QM,QA的斜率分別為
,
,
,若
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓
的右焦點為
,以原點
為圓心,短半軸長為半徑的圓恰好經(jīng)過橢圓
的兩焦點,且該圓截直線
所得的弦長為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)過定點
的直線交橢圓
于兩點
、
,橢圓上的點
滿足
,試求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
滿足
.
(1)求數(shù)列
的通項公式;
(2)設(shè)
,數(shù)列
的前
項和為
,求
;
(3)設(shè)
,問:是否存在非零整數(shù)
,使數(shù)列
為遞增數(shù)列?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com