【題目】2020年新冠肺炎疫情暴發(fā)以來,中國政府迅速采取最全面、最嚴(yán)格、最徹底的防控舉措,堅(jiān)決遏制疫情蔓延勢頭,努力把疫情影響降到最低,為全世界抗擊新冠肺炎疫情做岀了貢獻(xiàn).為普及防治新冠肺炎的相關(guān)知識(shí),某高中學(xué)校開展了線上新冠肺炎防控知識(shí)競答活動(dòng),現(xiàn)從大批參與者中隨機(jī)抽取200名幸運(yùn)者,他們的得分(滿分100分)數(shù)據(jù)統(tǒng)計(jì)結(jié)果如圖:
![]()
(1)若此次知識(shí)競答得分
整體服從正態(tài)分布,用樣本來估計(jì)總體,設(shè)
,
分別為這200名幸運(yùn)者得分的平均值和標(biāo)準(zhǔn)差(同一組數(shù)據(jù)用該區(qū)間中點(diǎn)值代替),求
,
的值(
,
的值四舍五入取整數(shù)),并計(jì)算
;
(2)在(1)的條件下,為感謝大家積極參與這次活動(dòng),對參與此次知識(shí)競答的幸運(yùn)者制定如下獎(jiǎng)勵(lì)方案:得分低于
的獲得1次抽獎(jiǎng)機(jī)會(huì),得分不低于
的獲得2次抽獎(jiǎng)機(jī)會(huì).假定每次抽獎(jiǎng)中,抽到18元紅包的概率為
,抽到36元紅包的概率為
.已知高三某同學(xué)是這次活動(dòng)中的幸運(yùn)者,記
為該同學(xué)在抽獎(jiǎng)中獲得紅包的總金額,求
的分布列和數(shù)學(xué)期望,并估算舉辦此次活動(dòng)所需要抽獎(jiǎng)紅包的總金額.
參考數(shù)據(jù):
;
;
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,已知平面
平面
是邊長為2的等邊三角形,點(diǎn)
是
的中點(diǎn),底面
是矩形,
,
為
上一點(diǎn),且
.
![]()
(1)若
,點(diǎn)
是
的中點(diǎn),求證:平面
平面
;
(2)是否存在
,使得直線
與平面
所成角的正切值為
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)均為正數(shù)的兩個(gè)數(shù)列
,
滿足
,
.且
.
(1)求證數(shù)列
為等差數(shù)列;
(2)求數(shù)列
的通項(xiàng)公式;
(3)設(shè)數(shù)列
,
的前n項(xiàng)和分別為
,
,求使得等式
成立的有序數(shù)對
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,SA⊥底面ABC,AC=AB=SA=2,AC⊥AB,D、E分別是AC、BC的中點(diǎn),F在SE上,且SF=2FE.
![]()
(1)求證:平面SBC⊥平面SAE
(2)若G為DE中點(diǎn),求二面角G﹣AF﹣E的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年新冠肺炎疫情暴發(fā)以來,中國政府迅速采取最全面、最嚴(yán)格、最徹底的防控舉措,堅(jiān)決遏制疫情蔓延勢頭,努力把疫情影響降到最低,為全世界抗擊新冠肺炎疫情做岀了貢獻(xiàn).為普及防治新冠肺炎的相關(guān)知識(shí),某高中學(xué)校開展了線上新冠肺炎防控知識(shí)競答活動(dòng),現(xiàn)從大批參與者中隨機(jī)抽取200名幸運(yùn)者,他們的得分(滿分100分)數(shù)據(jù)統(tǒng)計(jì)結(jié)果如圖:
![]()
(1)若此次知識(shí)競答得分
整體服從正態(tài)分布,用樣本來估計(jì)總體,設(shè)
,
分別為這200名幸運(yùn)者得分的平均值和標(biāo)準(zhǔn)差(同一組數(shù)據(jù)用該區(qū)間中點(diǎn)值代替),求
,
的值(
,
的值四舍五入取整數(shù)),并計(jì)算
;
(2)在(1)的條件下,為感謝大家積極參與這次活動(dòng),對參與此次知識(shí)競答的幸運(yùn)者制定如下獎(jiǎng)勵(lì)方案:得分低于
的獲得1次抽獎(jiǎng)機(jī)會(huì),得分不低于
的獲得2次抽獎(jiǎng)機(jī)會(huì).假定每次抽獎(jiǎng)中,抽到18元紅包的概率為
,抽到36元紅包的概率為
.已知高三某同學(xué)是這次活動(dòng)中的幸運(yùn)者,記
為該同學(xué)在抽獎(jiǎng)中獲得紅包的總金額,求
的分布列和數(shù)學(xué)期望,并估算舉辦此次活動(dòng)所需要抽獎(jiǎng)紅包的總金額.
參考數(shù)據(jù):
;
;
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》一書中,用如圖所示的三角形(楊輝三角)解釋了二項(xiàng)和的乘方規(guī)律.右邊的數(shù)字三角形可以看作當(dāng)n依次取0,1,2,3,…時(shí)
展開式的二項(xiàng)式系數(shù),相鄰兩斜線間各數(shù)的和組成數(shù)列
.例:
,
,
,….
![]()
(1)寫出數(shù)列
的通項(xiàng)公式(結(jié)果用組合數(shù)表示),無需證明;
(2)猜想
,與
的大小關(guān)系,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別為
,
,過點(diǎn)
的直線
與橢圓
相交于
,
兩點(diǎn).
(1)當(dāng)直線
的斜率
時(shí),求
的面積;
(2)當(dāng)
時(shí),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與
軸的正半軸重合,曲線
的極坐標(biāo)方程是
,直線
的參數(shù)方程是
(
為參數(shù)).
(1)若
,
是圓
上一動(dòng)點(diǎn),求點(diǎn)
到直線
的距離
的最小值和最大值;
(2)直線
與
關(guān)于原點(diǎn)對稱,且直線
截曲線
的弦長等于
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體A-BCD中,已知平面
平面BCD,
為正三角形,
為等腰直角三角形,其中C為直角頂點(diǎn),E,F分別為校AC,AD的中點(diǎn).
![]()
(1)求證:
平面BEF;
(2)求證:
平面ACD.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com