【題目】已知橢圓
的左、右兩個(gè)焦點(diǎn)分別為
,離心率
,短軸長(zhǎng)為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)
為橢圓上的一動(dòng)點(diǎn)(非長(zhǎng)軸端點(diǎn)),
的延長(zhǎng)線與橢圓交于
點(diǎn),
的延長(zhǎng)線與橢圓交于
點(diǎn),若
面積為
,求直線
的方程.
【答案】(Ⅰ)
(Ⅱ)
或![]()
【解析】試題分析:(Ⅰ)由題意得
,再由
橢圓的方程為
;(Ⅱ)①當(dāng)直線
斜率不存在時(shí),不妨取
面積為
,不符合題意. ②當(dāng)直線
斜率存在時(shí),設(shè)直線
, 由
得
,再求點(diǎn)
的直線
的距離
點(diǎn)
到直線
的距離為
面積為
∴
或
所求方程為
或
.
試題解析:![]()
(Ⅰ)由題意得
,∴
,
∵
,∴
,
∴橢圓的方程為
.
(Ⅱ)①當(dāng)直線
斜率不存在時(shí),不妨取
,
∴
面積為
,不符合題意.
②當(dāng)直線
斜率存在時(shí),設(shè)直線
,
由
化簡(jiǎn)得
,
設(shè)
,
∴
,
∵點(diǎn)
的直線
的距離
,
又
是線段
的中點(diǎn),∴點(diǎn)
到直線
的距離為
,
∴
面積為
,
∴
,∴
,∴
,∴
或
,
∴直線
的方程為
或
.
【題型】解答題
【結(jié)束】
25
【題目】已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間與極值;
(Ⅱ)若
,且
,證明:
.
【答案】(1)
的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
,函數(shù)
在
處取得極大值
,且
;(2)見(jiàn)解析.
【解析】試題分析:(1)先求導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn),列表分析導(dǎo)函數(shù)符號(hào)變化規(guī)律,進(jìn)而確定單調(diào)區(qū)間以及極值(2)為極值點(diǎn)偏移問(wèn)題,先構(gòu)造函數(shù)
,
,根據(jù)導(dǎo)數(shù)可得
單調(diào)性,即得
,最后根據(jù)
單調(diào)性得
,即證得結(jié)論
試題解析:(Ⅰ)由
,
易得
的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
,
函數(shù)
在
處取得極大值
,且![]()
(Ⅱ)由
,
,不妨設(shè)
,則必有
,
構(gòu)造函數(shù)
,
,
則
,所以
在
上單調(diào)遞增,
,也即
對(duì)
恒成立.
由
,則
,
所以
,
即
,又因?yàn)?/span>
,
,且
在
上單調(diào)遞減,
所以
,即證
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,把函數(shù)
的圖象向右平移
個(gè)單位,得到函數(shù)
的圖象,若
是
在
內(nèi)的兩根,則
的值為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,若同時(shí)滿足以下條件:
①
在D上單調(diào)遞減或單調(diào)遞增;
②存在區(qū)間
,使
在
上的值域是
,那么稱
為閉函數(shù).
(1)求閉函數(shù)
符合條件②的區(qū)間
;
(2)判斷函數(shù)
是不是閉函數(shù)?若是請(qǐng)找出區(qū)間
;若不是請(qǐng)說(shuō)明理由;
(3)若
是閉函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx+2x-6。
(1)證明:函數(shù)f(x)在其定義域上是增函數(shù);
(2)證明:函數(shù)f(x)有且只有一個(gè)零點(diǎn);
(3)求這個(gè)零點(diǎn)所在的一個(gè)區(qū)間,使這個(gè)區(qū)間的長(zhǎng)度不超過(guò)
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某自行車(chē)廠為共享單車(chē)公司生產(chǎn)新樣式的單車(chē),已知生產(chǎn)新樣式單車(chē)的固定成本為20000元,每生產(chǎn)一件新樣式單車(chē)需要增加投入100元.根據(jù)初步測(cè)算,自行車(chē)廠的總收益(單位:元)滿足分段函數(shù)h(x),其中
,x是新樣式單車(chē)的月產(chǎn)量(單位:件),利潤(rùn)=總收益﹣總成本.
(1)試將自行車(chē)廠的利潤(rùn)y元表示為月產(chǎn)量x的函數(shù);
(2)當(dāng)月產(chǎn)量為多少件時(shí)自行車(chē)廠的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣2ax+1+b(a>0)在區(qū)間[2,3]上有最大值4和最小值1.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)設(shè)函數(shù)g(x)=
,若不等式g(2x)﹣k2x≤0在x∈[﹣1,1]上恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1﹣x),(a>1).
(1)求函數(shù)h(x)=f(x)﹣g(x)的定義域;
(2)求使f(x)﹣g(x)>0的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x)=
,設(shè)f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N* , 且n≥2),令集合M={x|f2036(x)=x,x∈R},則集合M為( )
A.空集
B.實(shí)數(shù)集
C.單元素集
D.二元素集
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將三顆骰子各擲一次,記事件A=“三個(gè)點(diǎn)數(shù)都不同”,B=“至少出現(xiàn)一個(gè)6點(diǎn)”,則條件概率P(A|B),P(B|A)分別是( )
A.
, ![]()
B.
, ![]()
C.
, ![]()
D.
, ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com